Perinatal referral in Belgium

College of physicians for Mother and Newborn

Writing committee:

May 2007
Project participants

Project «Perinatal referral in Belgium»
Chair: Marleen Temmerman

Steering committee
Inge Tency, Evelyne Martens, Guy Martens, Jean-Michel Foidart

Writing committee
Sophie Alexander, Anne Clercx, Jean-Luc Deville, Myriam Hanssens, Dominique Haumont, Piet Vanhaesebrouck, Hilde Van Hauthem, Patrick Van Reempts, Geert Page, André Van Assche

Members of the college of physicians for Mother and Newborn

Neonatology section
Chair: Piet Vanhaesebrouck
Anne Charon, Hugo Devlieger, Dominique Haumont, Jean-Paul Langhendries, Patrick Van Reempts, Marianne Michel, Hilde Van Hauthem

Maternity section
Chair: Jean-Michel Foidart
Luc De Catte, Corinne Hubinont, Christine Kirckpatrick, Marleen Temmerman, Dominique Leleux, André Van Assche, Johan Van Wiemeersch

Workgroup «In utero transfer» (Maternity section)
Chair: Marleen Temmerman
Jean-Luc Deville, Roland De Vlieger, Corinne Hubinont, Yves Jaquemyn, Christine Kirckpatrick, Geert Page, Ann Verougstraete
Table of Contents

EXECUTIVE SUMMARY 5

1 **INTRODUCTION** 8

2 **OBJECTIVES** 11

3 **METHODOLOGY** 11

4 **RESULTS** 13
 4.1 **LITERATURE REVIEW** 13
 4.1.1 Methodology 13
 4.1.2 Results 15
 1. Regionalisation of care 15
 2. Levels of care 18
 3. Indications for transfer 19
 4. Transport 20
 5. Quality of perinatal care in Europe 20
 4.1.3 Conclusions 23
 4.2 **RETROSPECTIVE STUDY** 25
 4.2.1 Methodology 25
 1. Setting and population 25
 2. Design and data collection 26
 4.2.2 Results 27
 A. **QUANTITATIVE DATA** 27
 1. Response rate 27
 2. Number of deliveries 27
 3. In utero-transfers (IUT) 28
 4. Maternal transfers in the postnatal period 28
 5. Maternal retransfers 29
 6. Neonatal transfers (Outborns) 29
 7. In utero transfer versus neonatal transfer 30
 8. Neonatal retransfers (In/Outborns) 32
 9. Refusal rate of transfers by P*-function 32
 10. Costs of maternal transfer and retransfer 32
 11. Determinants of perinatal referral patterns 33
 12. Written agreement between M/N*-function and P*-function 34
 B. **QUALITATIVE DATA** 35
 4.2.3 Conclusions 42
 4.3 **PROSPECTIVE STUDY** 45
 4.3.1 Methodology 45
 1. Setting and population 45
 2. Design and data collection 45
 4.3.2 Results 46
 1. Response rate 46
 2. Number of deliveries 47
 3. Validation of the findings 49
 4. In utero transfer (IUT) in the regions 51
 5. Distribution of gestational age 52
 6. Indications for in utero transfer 52
 7. Reretrasfer of the mother 53
 8. No retransfer 55
 9. Comparison with the MOSAIC project (Flanders) 55
 10. Comparison with SPE 56
 4.3.3 Conclusions 59
Executive Summary

In 1996, levels of perinatal care were outlined by the Belgian Government. The Royal Decree of 1996 has delineated the concept of maternal and neonatal referral. Yet specific guidelines and actions of implementation and monitoring have to be elaborated. Therefore, the College of physicians of Mother and Newborn, an advisory committee to the Federal Ministry of Health decided to give priority to the assessment of in utero transfer (IUT) in Belgium in order to inform and advice the Ministry of Health on the organisation of perinatal care in Belgium (IUT project).

The study aims at mapping the rates of perinatal (re)transfer in Belgium and assessing the determinants of perinatal transfer, as well as constraints and drawbacks.

A literature review was carried out showing that regionalisation of perinatal care and referral of high-risk pregnant women and high-risk neonates to specialised intensive care units substantially lowers perinatal mortality and morbidity.

In the retrospective part of the IUT study quantitative data were collected on perinatal transfer and retransfer of the index year of 2004 as well as qualitative data about knowledge, attitudes and practices in relation to IUT and retransfer of mothers and neonates. The prospective part of the IUT project collected on-line individual baseline information for every pregnant women transferred and for every neonate born between 22 and 32 weeks and/or with an expected birth weight of <1500 g. Data were collected during 1 year (from the first of September 2005 until 31 of August 2006).

The quantitative data of the retrospective study show that the IUT rate in Belgium can be estimated at 90/10.000 deliveries. One third (32.7%) of the IUT mothers were retransferred to the original M-service. No information was available about the remaining IUTs. Most hospitals have formal agreements with P*-functions, but these agreements are not standardized. There is a significant diversity in number of agreements per hospital and per P*-function and also a large variation in content of
agreements. Indications for transfer or retransfer for mother and neonate are missing in most documents. The costs for IUT and maternal retransfer are largely unknown by the M-service and maternal referral procedures are not well documented.

The qualitative part of the retrospective study shows that most obstetricians/gynaecologists and paediatricians are convinced that neonates <32 weeks gestation and/or <1500 gram should be transferred in utero. However, only 50% of the participants believe that national guidelines and criteria will improve perinatal transfer policies. They also agree that when stabilisation of the obstetrical patient occurs and/or gestational age of 34 weeks is reached, retransfer to the referring hospital should be organised by the P*-function.

The response rate (54.4% from M-service, 37.1% from N*-function, 61.1% from MIC-service) in the prospective study was too low to allow analyses. Therefore, only the information from the MIC centres was further analysed and compared to existing databases such as the data of Studiecentrum of Perinatale Epidemiologie (SPE) and the Flanders data of a European database (MOSAIC). The main reasons for IUT were preterm labour, PPROM, multiple birth and pre-eclampsia. In approximately 75% of in utero transfers, the mother remained in the MIC-unit until she gave birth. The findings of the prospective study correlate with the SPE data and the Flanders data in MOSAIC. Over 90% of the very preterm deliveries (<32 weeks and/or >1500g) take place in a referral centre, most frequently admitted as inborns after in utero transfer. However, it has to be noticed that specific improvement is still possible in a highly vulnerable period of pregnancy (26-28 weeks) where optimal obstetrical and neonatal care can undoubtedly recede neonatal mortality and morbidity.

Overall conclusions of this project are: 1) national data on perinatal care are difficult to obtain in a standardized and systematic way 2) the current practice of perinatal transfer of high-risk pregnancies and high-risk neonates in Belgium is good 3) there is a lack of transport modalities, clear guidelines and supporting mechanism and 4) there is an urgent need for directives guidelines and transparant financial agreements to organise IUT (similar to neonatal transport) with compensations for referral.
The *College of physicians of Mother and Newborn* recommends to the Ministry of Health to develop a national perinatal program with following priorities: 1) development of a national register 2) organisation of better transport system with a financing based on online registration 3) development of operational strategies to improve the implementation of the Royal Decree of 1996 (e.g. standardization of agreements with minimal criteria, operational definitions of perinatal transfer, active referral policy, structured communication) 4) creation of a consultative platform with involvement of all stakeholders and 5) organisation of further health system research on perinatal transfer policy.
1 Introduction

During the last decades, neonatal survival has improved greatly in Belgium, in Europe and in the USA (Fig 1). Reductions in perinatal mortality are due in part to the development of neonatal intensive care (NIC) services (Paneth et al., 1982). Already in 1944, Sir Dugald Baird of Aberdeen showed that concentration of perinatal care is the key to better perinatal health (Baird, 1944). During the late 1960s and early 1970s, it became apparent that improved neonatal salvage was possible because of new care techniques in both obstetrics and paediatric practice. Numerous changes involving better metabolic and nutritional care for neonates, prenatal corticosteroids and prenatal surfactant, refined neonatal ventilator capabilities, and more aggressive treatment of infections became available for compromised neonates, especially very low birth weight babies (Pollack, 1996).

While these improved neonatal care techniques became apparent, obstetricians/gynaecologists recognised already in the seventies that certain pregnant women could benefit from delivering in a hospital where the newer care practices benefit potentially compromised newborns.

Thus, the stage was set for the beginning of a new era in perinatal health care—the regionalisation of care (Baird, 1944; Campbell, 1999; Committee on Perinatal Health, 1976; Gagnon, Allisoncooke, & Schwartz, 1988; Gerber, Dobrez, & Budetti, 2001; Gessner & Muth, 2001; Paneth et al., 1982)
In 1996, levels of perinatal care were outlined by the Belgian Government. The Royal Decree specifies general provisions and architectonic, functional and organisational standards of M-service2, N*-function3 and P*-function4 (MIC5 and NIC6). The heads of N*-functions and M-services were requested to develop procedures for collaboration between the two disciplines. One of these procedures was related to in utero transfer (IUT). The Royal Decree specifies consultation procedures before every in utero transfer, and invited interested parties to develop criteria for in utero and neonatal transfer and retransfer. These criteria were to be laid down in formal and written agreements with one of the NIC-services. Concerning maternal transfer and retransfer no provisions are mentioned in this Royal Decree of 1996. Criteria are provided by the federal Ministry of Health, while implementation fall under Community authorities.

1 EUROpean STATistics
2 Maternity
3 Function of neonatal care
4 Function of regional perinatal care
5 Maternal Intensive Care
6 Neonatal Intensive Care
The same Royal Decree includes criteria for the P*-functions. Each P*-function ought to make agreements of collaboration with hospitals with an M/N*-function, in order to cover a catchment area of at least 5000 deliveries per P*-function per year. The heads of departments of both services should meet twice a year in a structured consultation organised by the P*-function. A transport team should stand by in case of a neonatal transfer, and consultation is required with the referral hospitals with regard to conditions for maternal and neonatal transfer. However, neither written policies nor specific guidelines have been provided by National or Regional Authorities or by scientific and/or professional societies for the implementation of the directives of the Royal Decree of 1996.

Ensuring adequate access to intensive care for high-risk babies is a priority in Belgium as in other European countries. In many other Western countries, detailed strategies and financing mechanisms have been elaborated, implemented and assessed since the 1970’s. In Belgium, a spontaneous shift in referring high-risk babies has been observed as shown by the fact that in 1983, over 80% of the very low birth weight (VLBW, <1500g) neonates were born outside a referral centre (outborn babies) whereas in 2005, more than 80% of the VLBWs were inborns (personal communication P Vanhaesebrouck, chair of the Neonatology section of the college of physicians of the Mother and Newborn). In Flanders, between 89-90 to 92 a steady increase in IUTs for births <32 weeks was seen from 27 to 66% (Studiecentrum voor Perinatale Epidemiologie, 1992).

However, the absence of specific guidelines and lack of documented best practices for the small proportion of pregnant women and babies that need intensive care may be detrimental and may cause significant loss of chances for those mothers and children. Therefore, in 2004 the College of physicians for Mother and Newborn, an advisory committee to the Federal Ministry of Health decided to give priority to the assessment of the situation of in utero transfer in Belgium.

7 College van geneesheren voor de Moeder en Pasgeborene/ Collège de médecins pour la Mère et le Nouveau-né
2 Objectives

- To study perinatal transfer rates (in utero transfer, neonatal transfer and maternal retransfer rates) in Belgium
- To assess determinants of perinatal transfer (implementation of the Royal Decree of 1996), as well as constraints and drawbacks
- To propose recommendations for health policy makers to improve perinatal transfers

3 Methodology

The study was carried out by the College of physicians of Mother and Newborn, an advisory committee of the Federal Public Service (FPS) ‘Health, Food Chain Safety and Environment’. The College was established by a Royal decree of 15th of February 1999 with the goal to formulate recommendations in the area of Perinatal Medicine and Care to the Ministry of Health, health policy makers and stakeholders.

The College consists of two sections: 1) the Neonatology section with paediatricians of N*-function and NIC-service and 2) the Maternity section with obstetricians/gynaecologists of M-service and MIC-service.

A study group of members of the College of physicians of the Mother and Newborn was formed; a research assistant was employed (30%) and supervised by Prof M Temmerman and Prof P Vanhaesebrouck, Ghent University, and Prof JM Foidart, University of Liège. A Steering committee was set up, consisting of paediatricians and obstetricians/gynaecologists.

The group decided to use the following methods:

1) A literature review, carried out by the team of JM Foidart
2) A retrospective study consisting of a quantitative part aiming at collecting data on IUT in 2004, as well as a qualitative part interviewing health care providers in the field about knowledge, attitude and practices in relation to IUT and retransfer of mothers and neonates (M Temmerman, P Vanhaesebrouck)
3) A prospective study to find out on an individual case basis the number of high-risk pregnant women and neonates referred and non-referred, determinants of referral, and in case of deviation of the Royal Decree to describe the reasons why some women and neonates had not been referred (deviation of ‘optimal medical practice) (M Temmerman, P Vanhaesebrouck)

The results of the different parts of the project were regularly discussed with the Steering Committee. The draft report was presented to the Writing Committee by the end of 2006.
4 Results

4.1 Literature review

4.1.1 Methodology

The following electronic databases were searched to identify relevant publications:
1. Ovid MEDLINE(R) 1950 to January Week 2 2007
3. Ovid EBM Reviews-Cochrane Central Register of Controlled Trials 4th Quarter 2006
4. Ovid EBM Reviews-Cochrane Database of Systematic Reviews 4th Quarter 2006
5. Ovid EBM Review-Database of Abstracts of Reviews of Effects 4th Quarter 2006

The search strategy was used for MEDLINE and adapted to suit the other databases. MEDLINE search was limited to publications in the years 1980-2007. Unless otherwise stated, search terms are MeSH terms (Medline medical index terms). The exp. prefix indicates exploded MeSH terms. MeSH terms are combined with free text terms (.tw) searched in all of the fields in the databases which contain text words and which are appropriate for the subject. Textword index in Ovid MEDLINE (R) includes titles and abstracts. The dollar sign ($) stands for any character(s).

The P.I.C.O. model for clinical questions was used to isolate three concepts to be searched separately: 1) Transportation or referral of patients (mothers, newborns, in utero transfers); 2) High-risk pregnancies, preterm labours and prematures; 3) neonatal (intensive) care. The criteria were combined two by two (#1 AND #2; #1 AND #3) in order to retrieve relevant publications.

Search strategies were developed as follows:
1. exp obstetric labour, premature/ (10775)
2. premature birth/ (779)
3. fetal membranes, premature rupture/ (3094)
4. premature labor.tw. (1755)
5. preterm labor.tw. (2853)
6. preterm birth$.tw. (3070)
7. premature rupture.tw. (2802)
8. premature delivery.tw. (1405)
9. exp Infant, low birth weight/ (17599)
10. infant, premature/ (29170)
11. low$ birth weight.tw. (11547)
12. preterm newborn$.tw. (825)
13. preterm neonate$.tw. (1493)
14. preterm infant$.tw. (9037)
15. preterm neonate$.tw. (1493)
16. or/1-15 (62939)
17. transportation of patients/ (6403)
18. patient transfer/ (3400)
19. medical transportation.tw. (30)
20. ambulance$.tw. (4026)
21. transported patient$.tw. (85)
22. patient transfer$.tw. (448)
23. nontransported patient$.tw. (2)
24. patient$ transported.tw. (301)
25. transfer agreement/ (222)
26. or/17-25 (13398)
27. 16 and 26 (271)
28. limit 27 to yr="1980 - 2007" (231)
29. from 28 keep 176 references
30. perinatal care/ (1261)
31. intensive care units, neonatal/ (5753)
32. neonatal care.tw. (1247)
33. neonatal intensive care.tw. (6248)
34. perinatal care.tw. (1121)
35. perinatal setting$.tw. (25)
36. or/30-35 (12323)
37. 26 and 36 (357)
38. limit 37 to yr="1980 - 2007" (328)
39. from 38 keep 124 references
40. exp pregnancy complications/ (250603)
41. pregnancy, high-risk/ (3184)
42. pregnancy complication$.tw. (1557)
Selection of studies

After removal of duplicates, 554 references were retained from the different MEDLINE searches (1980-2007) and scanned for relevance. Articles were rejected on initial screen when neither titles, abstracts nor MeSH terms met the inclusion criteria. The remaining 329 articles were thus evaluated for inclusion in the current review.

The EBM Reviews databases did not contain any relevant publication.

From these extracted list and draft analysis, we finally integrated the data of 60 relevant publications.

4.1.2 Results

1. Regionalisation of care

Already in 1944, Sir Dugald Baird of Aberdeen showed that concentration of perinatal care is key to better perinatal health (Baird, 1944). One of the first efforts to put forth the philosophy of regionalized perinatal care was by the Department of National Health and Welfare in Canada, when it published ‘Recommended Standards for Maternity and Newborn Care’ in 1968 (Committee on Perinatal Health, 1976). It made the following statement: “It is recognised that certain mothers and infants, because of past pregnancy experience or present complications, are at high-risk for development of difficulties and require for their optimum care facilities and services
which may not be found in all hospitals providing maternity care. When these mothers and babies can be recognised and their problems anticipated there is a growing appreciation of the value of ensuring that they be cared for in hospitals with the best facilities even though this may require referral to another institution.”

In 1970, a landmark paper ‘The regional organisation of special care for the neonate’, also from Canada, was published in *Pediatric Clinics of North America* (Swyer, 1970). In the following year, national bodies in both Canada (Graven, 1971) and the USA (AMA House of Delegates, 1971) published statements to urge that attention should be directed to the development and operation of centralized perinatal intensive care facilities in every geographic region. Two goals of regionalisation were described in the American Medical Association (AMA) document: (1) ‘Programs to identify the high-risk pregnancy in sufficient time to allow for delivery at those hospitals which are staffed, equipped, and organised for optimal perinatal care”; and (2) ‘Programs for the early recognition of high-risk infants not identified during the prenatal period, which provide for the prompt transfer of a distressed infant to a more appropriately equipped facility when indicated. Arrangements for transport should be an integral part of the planning for community centred programs’

The USA introduced the concept of regionalisation of perinatal care in the 1970s (Berger, Gillings, & Siegel, 1976). Programmes were designed to organize health services for high-risk babies to ensure that they were born in hospitals equipped with the optimal expertise and technology. They emphasized three parameters:

1. Maternity units were classified into three levels of care in relation to the services they could provide for high-risk mothers and babies,
2. Transport systems were organized to these centres,
3. Links were organized between health structures to maintain expertise in lower level centres that were encouraged to transfer out their high-risk cases (Committee on Perinatal Health, 1976).

These programmes encouraged in utero transfer, considered to be the safest way to transfer a very preterm baby. Some Canadian provinces also implemented and evaluated these regionalisation programmes in the late seventies (Campbell, 1999).
Objective evaluations of this organisation of perinatal care provide:

1. the basis for much of the scientific knowledge on the effects of place of delivery on the survival of high-risk babies (Paneth et al., 1982)

2. Routinely validated indicators for monitoring regionalisation (Lindmark & Langhoff-Roos, 2004; Lupton & Pendray, 2004; Yu & Doyle, 2004)

Good results of regionalised perinatal care resulted in the continuation of the system in North America, even as it has come under attack by managed care systems (Gagnon et al., 1988; Gerber et al., 2001; Gessner & Muth, 2001). An ideal system for monitoring outcomes includes mortality, morbidity and care appropriate to the needs. Of the various perinatal mortality rates, the neonatal mortality rate is probably the most obvious to choose for monitoring perinatal health. This is because foetal deaths occur also in non-hospital setting and may go unreported, and post neonatal deaths are heavily influenced by social factors. *The neonatal mortality rate best reflects hospital care including obstetric service, neonatal care and transport service* (Hein, 2004).

In Europe, the organisation of perinatal care is currently under development in many European countries. Many of the initiatives to implement transfer policies, either through government action or the recommendations of scientific societies are recent. In this regard it is noteworthy that the Nordic European countries have developed validated tools and indicators of quality for the evaluation of the policies of in utero and neonatal transfers (Lindmark & Langhoff-Roos, 2004). The French policy was implemented in 1998, in Poland in 1995 (Lindmark & Langhoff-Roos, 2004; Minister of Health, 1999), and in Belgium in 1996. Both the Dutch (Health Council of the Netherlands, 2000) and Italian (Bollettiono Regionale del Lazio, 1997) recommendations were issued in 1999. Large differences occur in terms of health policies and in the size, supply and characteristics of maternity and neonatal units.

Table 1 summarizes the situation in 1999 in Europe. Belgium has indeed a policy to define the levels of care, based on a Royal Decree of 1987, but has not listed the indications for maternal or neonatal transfer, and has not structured the modalities of transport (Zeitlin, Papiernik, & Breart, 2004).
Table 1 Government policies and recommendations from scientific or professional societies concerning perinatal transports (EUROPET\(^8\) 1997-1999)

<table>
<thead>
<tr>
<th>Government policy</th>
<th>Recommendation from scientific or professional society</th>
<th>No written policy or recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels of care (^*)</td>
<td>Belgium, Czech Republic, France, Italy (certain regions), The Netherlands (level III only), Poland, Portugal, Sweden</td>
<td>Denmark, Finland, Germany, Ireland, Italy, Slovenia, UK</td>
</tr>
<tr>
<td>Indications for maternal or neonatal transfer</td>
<td>Italy (certain regions), Poland, Portugal (neonatal transfer only)</td>
<td>Austria, Czech Republic, France (certain regions), Germany, Italy, The Netherlands</td>
</tr>
<tr>
<td>Organisation of neonatal transport</td>
<td>Czech Republic, Denmark (certain regions), France, Greece, Italy (certain regions), The Netherlands (air transport), Poland, Portugal, Slovenia, Spain (certain regions)</td>
<td>Germany, Ireland, UK (certain regions), Sweden (air transport)</td>
</tr>
</tbody>
</table>

\(^*\) Levels of care directly related to the care of pregnant women and newborns.

2. Levels of care

Levels of care are defined differently in different places. Countries with officially designated levels of care include Belgium (Ministère des affaires sociales de la santé publique et de l'environnement, 1996), the Czech Republic, France (Ministère de l'Emploi et de la Solidarité, 1998), some regions of Italy, The Netherlands, Poland, Portugal and Sweden. In the Netherlands, only level III units have an official definition (Ministerie Volksgezondheid, 1999).

\(^8\) The EUROpean network for PErinatal Transport (1996)
3. **Indications for transfer**

Official policies can be more or less comprehensive. Policy in the Netherlands designates the 10 NICUs that are allowed to provide neonatal intensive care to very preterm babies, but does not itemize indications for transfer to these centres or other guidelines. In Poland, the transfer programme includes specific health objectives, the classification of all maternity units, the establishment of conventions between units, and indications for transferring mothers and babies (Gadzinowski, Szymankiewicz, & Breborowicz, 1998). Some national scientific societies (Germany, Italy, Slovenia and Austria) issue recommendations and guidelines, which generally emphasize the importance of in utero transfer and birth in level III centres for very preterm babies (AWMF online, 1996). They provide detailed indications for in utero transfer to perinatal centres with criteria for perinatal centres and describe their organisational structure and other requirements.

In other European countries, both government and scientific societies play a role. In the Netherlands, as mentioned above, the government regulates the supply of neonatal intensive care. Guidelines for in utero transfer and criteria for using these services, however, have been issued by a scientific society (AWMF online, 1996; Nederlandse vereniging voor obstetrie en gynaecologie-Nederlandse vereniging voor kindergeneeskunde, 1999). In Denmark, a scientific committee drew up practice guidelines, which were subsequently endorsed by the National Board of Health (AWMF online, 1996; Truffert, Gadzinowski, & Peitersen, 1999). Some countries like Belgium have no guidelines, official or otherwise, for the place of delivery of very preterm babies. The UK recommendations define four levels of neonatal care: maximal intensive care, high-dependency care, special care and normal care (AWMF online, 1996; British Association of Perinatal Medicine, 1996). These do not, however, map clearly on to individual units. However, a recent government report has made recommendations about the importance of reorganizing neonatal care provision into managed networks and identifying level I, II and III units (AWMF online, 1996; Department of Health, 2003). Similarly, most regions in Spain do not have policies, and Switzerland has no official policies.
In summary, there is significant diversity among European countries and regions, in approaches to the provision of intensive care services for the small proportion of pregnant women and babies that need it. Discrepancies between European countries make comparisons rather difficult as well as between “European” and US standards. It is difficult therefore to extract a definite picture of intrauterine transfer in Europe from them (AWMF online, 1996; Zeitlin et al., 2004).

4. Transport

Initiatives to improve care for preterm babies in some European countries have focused on the provision of better neonatal transport systems (Field, Milligan, Skeoch, & Stephenson, 1997). Some countries, including Belgium, have neither regionally organized maternal antenatal and neonatal transport systems nor guidelines governing in utero or neonatal transport.

The components that facilitate an effective neonatal emergency transport network, and the human resources required for safe transport are well known and described (AWMF online, 1996; Lupton & Pendray, 2004). Lupton and Pendray for Canada address in their review paper of 2004 all requirements related to equipment, communications, quality assurance; data management, family support and education in the context of a neonatal transport programme. In addition, elements involved in the organisation of neonatal transport and transport issues pertaining to networking of neonatal care are highlighted (Lupton & Pendray, 2004).

5. Quality of perinatal care in Europe

Evaluations of the care and outcome of very preterm babies are performed at a National level in many European countries, and by several studies sponsored by the European Commission (EUROPET9 and MOSAIC10 programmes) (Field & Draper, 1999; Finnstrom et al., 1997; Kollée, Verloovevanhorick, Verwey, Brand, & Ruys,

9 The EUROpean network for PErinatal Transport (1996)
1988; Obladen et al., 1994; Papiernik & Keith, 1995; Truffert, Goujard, Dehan, Vodovar, & Breart, 1998; Viisainen, Gissler, & Hemminki, 1994; Zeitlin et al., 2004). The EUROPET (BMH4-CT96-1583) project (1996) surveyed policies and practices of perinatal transport and of maternal transfers in high-risk pregnancies and neonatal transfers for babies born before 32 weeks of gestation (Debauche, Van Reempts, Chabernaud, Kollée, & Zeitlin, 1999). The aim was to develop good practice guidelines for Europe (Kollée, Chabernaud, Van Reempts, Debauche, & Zeitlin, 1999; Papiernik, Breart, Di Renzo, & Sedin, 1999; Zeitlin et al., 2004).

The methodology used by the College of physicians for Mother and Newborn in the course of this project was derived from these European studies. In EUROPET (1996), a short questionnaire collected information on the total number of very preterm babies (age of less than 32 completed weeks of gestation) admitted to the unit, separated by whether they were inborn (born in the adjoining maternity unit) or outborn (transferred from another unit).

The MOSAIC (QLG4-CT-2001-01907) study examined from 2003, the care of very preterm babies in 10 regions in Europe. A similar protocol collected indicators of care and outcome for all births before 32 weeks of gestation in the participating regions.

Place of birth of very preterm babies in Europe (<32 weeks)

Information from the EUROPET study of large NICUs as well as data from the published literature make it possible to draw a rough picture of the place of birth of preterm babies in Europe.
Table 2: Inborn rates of the very preterm population (<32 weeks) hospitalized in large NICUs in Europe (Zeitlin et al., 2004)

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of NICUs admitting more than 40 babies <32 weeks GA</th>
<th>Average inborn rate for babies <32 weeks GA in these units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>4</td>
<td>97.9</td>
</tr>
<tr>
<td>Ireland</td>
<td>3</td>
<td>97.8</td>
</tr>
<tr>
<td>Portugal</td>
<td>9</td>
<td>88.9</td>
</tr>
<tr>
<td>Spain</td>
<td>9</td>
<td>85.9</td>
</tr>
<tr>
<td>Germany</td>
<td>30</td>
<td>84.6</td>
</tr>
<tr>
<td>Denmark</td>
<td>6</td>
<td>86.4</td>
</tr>
<tr>
<td>Sweden</td>
<td>6</td>
<td>86.2</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>2</td>
<td>84.1</td>
</tr>
<tr>
<td>Italy</td>
<td>19</td>
<td>82.2</td>
</tr>
<tr>
<td>Northern region, UK</td>
<td>4</td>
<td>78.9</td>
</tr>
<tr>
<td>Switzerland</td>
<td>8</td>
<td>77.9</td>
</tr>
<tr>
<td>Belgium</td>
<td>12</td>
<td>77.4</td>
</tr>
<tr>
<td>Poland: 10 regions</td>
<td>10</td>
<td>72.3</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>10</td>
<td>71.1</td>
</tr>
<tr>
<td>Austria</td>
<td>8</td>
<td>61.1</td>
</tr>
<tr>
<td>Hungary</td>
<td>16</td>
<td>56.3</td>
</tr>
<tr>
<td>Greece</td>
<td>9</td>
<td>56.2</td>
</tr>
<tr>
<td>France</td>
<td>25</td>
<td>50.8</td>
</tr>
</tbody>
</table>

NICU. Neonatal intensive care unit; GA. gestational age.
Countries in italics had a response rate of <75% of all NICUs surveyed.
* One NICU was at a distance from its reference maternity unit; this unit has since moved, giving an overall rate of 80%.

Table 2 provides information on the average inborn rates in 1996 in the EUROPET study (Zeitlin et al., 2004). In most European countries, only few very preterm babies were born in level I units. Postnatal transports of very preterm babies to tertiary centres are infrequent but the survey included only reference NICUs. It thus did not include babies born and cared for in other units, or babies who died before admission to a level III neonatal unit. Data are available from Finland (Viisainen et al., 1994; Wildman, Blondel, Nijhuis, Defoort, & Bakoula, 2003), France (Chale et al., 1997; Fresson, Blondel, & Truffert, 2001; Papiernik, Bucourt, Zeitlin, Senanedj, & Topuz, 2001), Germany (Papiernik et al., 2001; Von Loewenich & Vonderheit, 1996), The Netherlands (Jonsson, KatzSalamon, Faxelius, Broberger, & Lagercrantz, 1997; Kollee, Verwey, Ouden, & et al, 1996), Sweden (Finnstrom et al., 1997; Jonsson et al., 1997) and the UK (Cole & Macfarlane, 1995; Field & Draper, 1999). In addition, very preterm babies were born in large center NICUs.

France implemented its regionalisation programme in 1998. In 1991, only 15% of very preterm babies were delivered in level III unit vs. 63% in 1997, and 82% in 2003. In the Netherlands, between 1983 and 1995, the percentage of births delivered in level III units rose from 34% to 68%.

Overall, between 50% and 70% of the very preterm babies in the countries represented in this table were born in large units (1990s, 51).
4.1.3 Conclusions

The variety of approaches in countries with similar levels of development and medical technology offers a unique opportunity to understand how different organisational characteristics affect access to care, health outcomes and resources use. Comparative analyses of the efficacy of these different policies in terms of health outcomes for preterm babies have not yet been undertaken. Studies have identified significant variations in perinatal mortality rates linked to these differences (De Leeuw et al., 2000; Graafmans et al., 2001).

Despite their differences, European countries are seeking answers to common problems. The multitude of recently issued policies and recommendations on these high-risk births suggest unresolved difficulties in many countries (Debauche et al., 1999). There is, for example, uncertainty over the appropriate size of units in which babies at risk should receive care. Some studies show that mortality is higher among infants who receive care in small neonatal units with a low volume of patients (Darlow & Horwood, 1992; Finnstrom et al., 1997; Harding & Morton, 1994; Phibbs, Bronstein, Buxton, & Phibbs, 1996). In other settings, however, equivalent outcomes result from delivery and hospitalization in smaller units for very preterm newborns and, in some cases, transport after birth does not increase the risks of mortality (Arad et al., 1999; Field & Draper, 1999; Meadow et al., 2002; Phibbs et al., 1996; UK Neonatal Staffing Study Group, 2002). A recent study of high-risk infants in Scotland and Australia conjectured that observed differences in mortality were due to differences in the characteristics of neonatal units (International Neonatal Network, Scottish Neonatal consultants, & Nurses Collaborative Study Group, 2000; Meadow et al., 2002).

Another common problem concerns space and management impeding maternal transfers. In the UK, for example, the number of transfers between level III units is increasing due to lack of space (Parmanum, Field, Rennie, & Steer, 2000). These problems also exist in The Netherlands: The authors of a recent governmental report concluded that 983 mothers whose babies needed intensive care were not admitted to a perinatal centre before delivery (Health Council of the Netherlands, 2000).
Further study of the advantages and the disadvantages of the diverse European models of care could provide insight for countries seeking to improve the organisation of care and health outcomes for this population of high-risk births (Zeitlin et al., 2004).

The experience in the USA, UK and Australia has indicated that, despite the great benefits of regional organisation, a number of common and inevitable problems will arise, which require careful attention and management.

The following problems have been summarized in the review by Yu & Dunn (2004):

1. The conflict of interest between the centralization of resources and local provision
2. The problem of transporting patients and relatives between hospitals;
3. The potential loss of skills in managing high-risk pregnancies and babies at the level of the peripheral hospital in case all high-risk patients are transferred to level III units.
4. A loss of status and prestige for the referring hospital;
5. A loss of income for the referring hospital and the referring physician;
6. The problem of inadequate staffing and facilities in the NICs and MIC’s, and the need to place over-reliance on junior doctors and nurses in training even in many of the best regional perinatal centres.”
4.2 Retrospective study

4.2.1 Methodology

1. Setting and population

In 2003, Belgium counted 215 hospitals, 116 of them registered as general hospitals. Of these, 108 hospitals have a maternity service spread over 127 sites11. In Belgium, hospitals with a maternity service are obliged to have an N*function. In this study only hospitals with an M-service and an N*-function (n= 108) were included. The 19 hospitals that were excluded, are 18 P*-functions (with a MIC and NIC-service) en one hospital with only a NIC-service. Patients from an M-service respectively N*-function are referred to the MIC/NIC hospitals in case they need specialized intensive care.

Three out of the 108 eligible hospitals with M/N*-service were excluded because they have been merged with another hospital or they reported not longer having an M-service or N*-function in their hospital. Thus, 105 hospitals with M/N*-function were invited to participate in the study.

11 Source: Federal Public Service, Health, Food chain safety and Environment
Figure 2 provides an overview of the selection of the study population.

2. Design and data collection

A semi-quantitative questionnaire (Annex 4) was addressed to the heads of departments M-service and N*-function. In a first part the questionnaire asked for quantitative data (general numerical data) for the year 2004 (e.g. number of deliveries, number of obstetricians/gynaecologists/paediatricians in place, number of (re)transfer). Qualitative data were collected through a semi-structured questionnaire asking about current policies, as well as their opinion and suggestions on how to improve care. Because of the specificity of certain topics, two different types of questionnaires were developed: one for the M-service and one for the N*-function.
4.2.2 Results

A. QUANTITATIVE DATA

1. Response rate

A response was received of 87 of the 105 hospitals (82.9%). From 62 hospitals (71.3%) both M-service and N*-function filled the questionnaire. For 13 hospitals (14.9%) and 12 hospitals (13.8%) response was only available from respectively the N*-function and the M-service. Further analyses are based on data obtained from the 62 hospitals where both sections have provided data.

2. Number of deliveries

In 2004, 117,99012 deliveries were registered in Belgium. Of these, 86,179 (=73.0%) occurred in a maternity service and 31,811 (27.0%) in a maternity with MIC-service.

The data available in this study are related to the total number of 50,577 deliveries in the Belgian M-services (2004). Hence, our study represents 58.7% (50,577 out of 86,179) of the deliveries registered. Table 3 illustrates the distribution of the number of deliveries in 7 categories according to the size of the maternity.

<table>
<thead>
<tr>
<th>Number of deliveries (category)</th>
<th>Number of hospitals within category (n=62)</th>
<th>Number of deliveries (n=50,577)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-399</td>
<td>5 (8.1%)</td>
<td>1.798 (<1%)</td>
</tr>
<tr>
<td>400-599</td>
<td>16 (25.8%)</td>
<td>8.553 (16.9%)</td>
</tr>
<tr>
<td>600-799</td>
<td>19 (30.6%)</td>
<td>13.066 (25.8%)</td>
</tr>
<tr>
<td>800-999</td>
<td>8 (12.9%)</td>
<td>7.199 (14.2%)</td>
</tr>
<tr>
<td>1000-1199</td>
<td>7 (11.3%)</td>
<td>7.417 (14.7%)</td>
</tr>
<tr>
<td>1200-1399</td>
<td>3 (4.8%)</td>
<td>3.862 (<1%)</td>
</tr>
<tr>
<td>≥1400</td>
<td>4 (6.5%)</td>
<td>8.682 (17.2%)</td>
</tr>
</tbody>
</table>

Most of the deliveries are performed by an obstetrician/gynaecologist (98.8%). Only 0.8% of the deliveries were handled by a general practitioner.

12 Source: Federal Public Service, Health, Food chain safety and Environment
3. In utero-transfers (IUT)

The number of IUTs in 2004 was provided by 57/62 (91.9%) M-services. They reported 421 IUT transfers out of a total of 46,747 deliveries (which is the total of deliveries performed in these 57 M-services). The IUT rate in Belgium (2004) can be estimated at 0.9% or 90 transfers/10,000 deliveries.

The range in number of IUTs is large between the different M-services. About half of the M-service reported 3 to 10 IUT in 2004.

Over half of the hospitals (56.1% or 32/57) have a number of deliveries ranging between 400 to 799 per annum and therefore account for the preponderance of IUTs (Table 4). However, it may also be noticed that the few relatively larger hospitals (≥ 1000 deliveries) still account for about one third of all IUTs (32.5% or 137/421).

Table 4: Distribution of IUTs in relation to the number of deliveries (category)

<table>
<thead>
<tr>
<th>Number of deliveries (category)</th>
<th>Number of hospitals within category (n=57)</th>
<th>Number of in utero transfers within category</th>
<th>Number of deliveries (n=46,747)</th>
<th>IUT rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-399</td>
<td>5</td>
<td>10 (2.4%)</td>
<td>1,798 (<1%)</td>
<td>0.6%</td>
</tr>
<tr>
<td>400-599</td>
<td>15</td>
<td>88 (20.9%)</td>
<td>7,976 (17.1%)</td>
<td>1.1%</td>
</tr>
<tr>
<td>600-799</td>
<td>17</td>
<td>139 (33.0%)</td>
<td>11,709 (25%)</td>
<td>1.2%</td>
</tr>
<tr>
<td>800-999</td>
<td>7</td>
<td>47 (11.2%)</td>
<td>6,389 (13.7%)</td>
<td>0.7%</td>
</tr>
<tr>
<td>1000-1199</td>
<td>6</td>
<td>55 (13.1%)</td>
<td>6,331 (13.5%)</td>
<td>0.9%</td>
</tr>
<tr>
<td>1200-1399</td>
<td>3</td>
<td>33 (7.8%)</td>
<td>3,862 (<1%)</td>
<td>0.9%</td>
</tr>
<tr>
<td>≥ 1400</td>
<td>4</td>
<td>49 (11.6%)</td>
<td>8,682 (18.6%)</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

4. Maternal transfers in the postnatal period

We tried to collect information on the number of transfers (2004) in the postnatal period for maternal indications. Most respondent have interpret this question incorrectly and included in their answers also or only postnatal neonatal transfers where the mother is admitted in the early postpartum to accompany her newborn baby who is admitted for intensive care. Therefore we decided not presenting these results in the report.
5. Maternal retransfers

We asked for the number of maternal retransfers in 2004. Maternal retransfer means the retransfer of a pregnant woman from the MIC-service to the referring M-service. Answer was obtained from 83.9% (52/62) M-services. They reported 113 maternal retransfers out of 41,010 deliveries (which is the total of deliveries performed in these 52 M-services). The rate of maternal retransfer in Belgium (2004) can be estimated at 0.28% or 28 retransfers/10,000 deliveries.

Most M-services (90.4% or 47/52) reported 0 to 5 retransfers. Of the participants who answered this question, 61.5% (30/52) mentioned no maternal retransfer in 2004.

In our study approximately 32.7% (113 maternal retransfers/346 IUTs) of the mothers, hospitalized in a MIC-service after IUT, were retransferred to the referring hospital. Answer on both questions was obtained from 80.6% (50/62) participants. Analysis of the relation between IUT and maternal retransfer per hospital was difficult because of the small sample size.

6. Neonatal transfers (Outborns)

By asking for the number of neonatal transfers (2004) we want to gain clear insight in the number of neonates, whom are born in the referring hospital and need transfer to a neonatal intensive care unit. Answer was obtained from 60/62 (96.8%) N*-functions. They reported 712 neonatal transfers out of 49,618 deliveries (which is the total of deliveries performed in these 60 M-services). The rate of neonatal transfer in Belgium (2004) can be estimated at 1.43% or 143 neonatal transfers/10,000 deliveries. About half of the N*-functions report 7 to 14 neonatal transfers in 2004.

Over half of the hospitals (56.7% or 34/60) have a delivery rate of 400 to 799 deliveries per annum and therefore account for the preponderance of neonatal transfers (Table 5). However, it may also be noticed that the few larger hospitals (≥ 1000 deliveries) still account for about one third of all neonatal transfers (33.8% or
241/712). It seems that relatively smaller hospitals have a higher rate of neonatal transfers than the few larger ones.

Table 5: Distribution of neonatal transfers in relation to the number of deliveries (category)

<table>
<thead>
<tr>
<th>Number of deliveries (category)</th>
<th>Number of hospitals within category (n=60)</th>
<th>Number of neonatal transfers within category</th>
<th>Number of deliveries (n=49,618)</th>
<th>Neonatal transfer rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-399</td>
<td>4</td>
<td>51 (7.2%)</td>
<td>1.497 (<1%)</td>
<td>3.4%</td>
</tr>
<tr>
<td>400-599</td>
<td>16</td>
<td>122 (17.1%)</td>
<td>8.553 (17.2%)</td>
<td>1.4%</td>
</tr>
<tr>
<td>600-799</td>
<td>18</td>
<td>199 (27.9%)</td>
<td>12.408 (25%)</td>
<td>1.6%</td>
</tr>
<tr>
<td>800-999</td>
<td>8</td>
<td>99 (13.9%)</td>
<td>7.199 (14.5%)</td>
<td>1.4%</td>
</tr>
<tr>
<td>1000-1199</td>
<td>7</td>
<td>138 (19.4%)</td>
<td>7.417 (14.9%)</td>
<td>1.8%</td>
</tr>
<tr>
<td>1200-1399</td>
<td>3</td>
<td>34 (1.8%)</td>
<td>3.862 (<1%)</td>
<td>0.8%</td>
</tr>
<tr>
<td>≥1400</td>
<td>4</td>
<td>69 (9.7%)</td>
<td>8.682 (17.5%)</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

7. In utero transfer versus neonatal transfer

To get further insight in the transfer policy of a hospital, we explored the potential relationship between the number of in utero transfers and the number of neonatal transfers for the referring hospitals. A high IUT rate may be expected with a low neonatal rate and vice versa. A slight negative, but non-significant correlation was found between in utero transfer and neonatal transfer (r= -0.195, P=0.149) (Fig 3). Also a ratio IUT-neonatal transfer was calculated and correlated with the total number of deliveries. This correlation was also weak (r= 0.141) and not significant (P=0.304) (Fig 4). Analysis per hospital was not done due to the small sample size.

13 A more appropriate denominator should be live births, but these data are not available. In 2004, Foetal death in Flanders was 0.42% (SPE)
Figure 3: Correlation between number of in utero transfers and number of neonatal transfers (2004)

Figure 4: Correlation between ratio “IUT-neonatal transfer” and number of deliveries
8. Neonatal retransfers (In/outborns)

A question about the total number of neonatal retransfers in 2004 was included in the questionnaire. For these, no distinction was made between the retransfer of inborn (after IUT) and outborn neonates. Answer was obtained from 59/62 (95.2%) N*-functions. They reported 566 neonatal retransfers.

In our study approximately 54.2% of the neonates, hospitalized in a NIC-service after IUT or neonatal transfer, were retransferred to the referring hospital. This retransfer rate might be slightly underestimated, because approximately one third of the IUTs were retransferred and thus these neonates are not inborns. Only the hospitals (87.1% of 54/62) from whom an answer was obtained on these three questions (number of IUTs, neonatal transfer and retransfer) were included in the analysis.

9. Refusal rate of transfers by P*-function

We asked the participants if the P*-function ever refused their request for maternal or neonatal transfer. Approximately one third of the participants mentioned a non acceptance of transfer by the P*-function (M-service: 30.6% or 19/62, N*-function: 40.3% or 25/62).

Further we examined the reason for refusal. In most cases the transfer was refused because the maximal hospital bed occupancy of the NIC-service was reached. The M-service and N*-function reported a problem of the NIC-service in 73.7% (14/19) respectively 96% (24/25) of the refusals. A non acceptance of transfer occurred in 42.1% (8/19) by the MIC-service. Two responders mentioned another reason for refusal: a gestational age <24 weeks and transfer refused by obstetricians/gynaecologists, paediatrician and family.

10. Costs of maternal transfer and retransfer

One of the questions refers to the costs related to maternal (re)transfer. The heads of department M-service were asked if they had an idea of the financial contribution to (or reimbursement for) these costs by their institution. Only a few participants are
aware of the costs of maternal transfer (24.6% or 15/61) and retransfer (13.1% or 8/61). One of the questions related to the awareness of the costs or reimbursement of these costs. Answer on this question was obtained from 79.4% (43/62) of the participants. Only 18.6% (8/43) mentioned having an idea of the amount of costs.

11. Determinants of perinatal referral patterns

In the questionnaire we had included a list of reasons/determinants why an M-service and N*-function refer to a particular P*-function. The participants were asked to number these reasons in sequence according to their preference (1= first choice and 7=last choice). We asked the participants to classify following determinants: distance, preference patient, organisation and policy P*-function, language purpose, agreement with P*-function, specificity P*-function and institution of academic education. Also the possibility “other” was provided as an answer option.

For analysis we included only the three main motivations for choice of referral hospital. Incomplete answers were excluded. Because of the small sample size, no separate analysis was made for M-service and N*-function only. There seemed no significant difference in the answers of the M-service and N*-function, except for the determinant distance (two-side P-value = 0.04).

A total response rate (M-service and N*-function) for this question was obtained by 89.5% (111/124) of the participants. Approximately a same response rate was received from both services. For the M-services 88.7% (55/62) and N*-functions 89.5% (56/62) of the participants answered this question.

Of all determinants of perinatal transfer, distance was mentioned by the M-service and N*-function in 22.5% of the cases as the most important or second important reason. Institutional or academic links (4.1%) and language (5.0%) were not reported as determinants for perinatal transfer. The other determinants seemed to be of the same importance: preference patient (17.1%), organisation and policy P*-function (17.1%), agreement with P*-function (18.0%) and specificity P*-function (16.7%).

\[14 \text{ From 19 participants we did not obtained an answer on this question}\]
12. Written agreement between M/N*-function and P*-function

In this study 90.3% (56/62) of the M-services and 93.5% (58/62) of the N*-functions report having an agreement with a MIC/NIC unit (P function). According to the heads of departments of M-service and N*-function, most of the obstetricians/gynaecologists (83.9% or 47/56) and paediatricians (94.8% or 55/58) in service comply with this written agreement.

When asked if the agreement contains criteria for maternal or neonatal transfer, only 50% (28/56) mention criteria for IUT, 32.1% (18/56) criteria for maternal transfer in postpartum and 56.9% (33/58) criteria for neonatal transfer.

A copy of the agreement between M/N*-function and a P*-function was received from 59 out of the 105 hospitals (56.2%). In all, 131 agreements were sent in, but only 123 agreements were considered, corresponding with a response of 51.4% (54/105) of the hospitals. Eight agreements were excluded of analysis because they contain no elements of collaboration between M/N*-functions and P*-functions. Of these 8 agreements, 2 agreements were an intern order, 2 a collaboration between departments, 3 a protocol concerning SIDS (sudden infant death syndrome) and one was under negotiation.

The analysis of the agreements received shows a great difference in number of agreements per hospital. As illustrated in the following figure, most hospitals have 1, 2 or 3 agreements with a given P*-function. A few hospitals mention ≥ 4 agreements with a P*-function.
The same trend can be seen for the number of agreements per P*-function. Some P*-functions have an agreement with one hospital. Others have an agreement with more than 1 up to 18 hospitals (Fig 6)

The type of agreement is not specified in 61.8% (76/123) of the agreements. Only 0.8% (46/123) was exclusive, the others (37.4% or 46/123) were defined as non-exclusive.

B. QUALITATIVE DATA

In the qualitative part of this study, nine statements (table 6) concerning perinatal referral policy were formulated. The participants had to evaluate these statements on a 5 point Likert scale (1= strongly agree to 5= strongly disagree).
Table 6: Nine statements concerning perinatal referral policy

1. National guidelines and criteria are necessary for an optimal policy of transfer and retransfer
2. Standardization of perinatal policy will bring benefits from a medical point of view
3. Standardization of perinatal policy will bring benefits from a social point of view (mother and family)
4. Standardization of perinatal policy will bring benefits from a financial point of view
5. Neonates <32 weeks gestation and/or <1500 grams should be transferred in utero to a P*-function
6. An elimination of the high-risk situation of mother or foetus and/or a gestational age of 34 weeks are good criteria for retransfer
7. The transfer of a high-risk pregnancy is a multidisciplinary decision of paediatricians and obstetricians/gynaecologists of both referring hospital and the P*-function
8. In utero transfer is preferred over neonatal transfer, except in case of an imminent threatened delivery
9. The structured organisation of perinatal care has an important influence on neonatal morbidity and mortality

To enhance the interpretations of the results, statistical analyses were performed on a 3 point Likert scale (1= strongly agree to agree, 2= neutral, 3= disagree to strongly disagree). Table 7 presents the opinions of both M-service and N*-function on the different statements on the 3 point Likert scale. No significant difference were found between the answer of the heads of M-service and N*-function.

Table 7: Opinions of the M-service and N*-function regarding perinatal referral policy (N=123)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>National guidelines and criteria</td>
<td>60</td>
<td>26</td>
<td>36</td>
</tr>
<tr>
<td>Standardization medical point of view</td>
<td>76</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>Standardization social point of view</td>
<td>32</td>
<td>47</td>
<td>44</td>
</tr>
<tr>
<td>Standardization financial point of view</td>
<td>38</td>
<td>53</td>
<td>32</td>
</tr>
<tr>
<td><32 weeks an/or <1500 grams → IUT</td>
<td>100</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Resolution high-risk situation and/or 34 weeks → retransfer</td>
<td>112</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Transfer of high-risk pregnancy = multidisciplinary decision</td>
<td>113</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>In utero transfer is preferred above neonatal transfer</td>
<td>112</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Organisation perinatal care → influence neonatal mortality/morbidity</td>
<td>110</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 7 shows that only 50% of the participants (54.1% M-service, 44.3% N*-function) are convinced of the usefulness of national guidelines and criteria concerning transfer policy.
Figure 7: National guidelines and criteria are necessary for an optimal policy of transfer and retransfer

As illustrated in figures 8-10, the participants consider standardization of perinatal referral policy to be beneficial from a health point of view, not at social and financial levels.

Figure 8: Standardization of perinatal policy will bring benefits from a medical point of view
Figure 9: Standardization of perinatal policy will bring benefits from a social point of view (mother and family)

![Bar chart showing percentages of agreement, neutrality, and disagreement for M-service and N*-function categories.]

Figure 10: Standardization of perinatal policy will bring benefits from a financial point of view

![Bar chart showing percentages of agreement, neutrality, and disagreement for M-service and N*-function categories.]

Over 80% of the respondents endorse in utero transfer for neonates <32 weeks gestation and/or <1500 gram (Fig 11).
Figure 11: Neonates <32 weeks gestation and/or <1500 grams should be transferred in utero to a P*-function

Figure 12 illustrates that stabilisation of the obstetrical problem and/or a gestational age of 34 weeks can be seen as good criteria for retransfer.

Figure 12: Stabilisation of the obstetrical problem and/or a gestational age of 34 weeks are good criteria for retransfer

Most participants agree that the transfer of a high-risk pregnancy has to take place after multidisciplinary decision of paediatricians and obstetricians/gynaecologists (Fig 13) and that in utero transfer is preferred above neonatal transfer (Fig 14).
Figure 13: The transfer of a high-risk pregnancy is a multidisciplinary decision of paediatricians and obstetricians/gynaecologists of both referring hospital and the P*-function.

Figure 14: In utero transfer is preferred over neonatal transfer, except in case of an imminent threatened delivery.

Figure 15 illustrates that the participants believe that neonatal morbidity and mortality can be influenced by the way perinatal care is organised.
At the end of the questionnaire, participants were invited to formulate recommendations to improve perinatal referral patterns. Although few responders provided an answer to this question, some interesting findings emerged.

In particular, the heads of departments M-service (25.8% or 16/62) and N*-function (41.9% or 26/62) emphasized following obstacles and recommendations:

- P*-functions should organize practical and theoretical training (e.g. literature review, discussion forums on patient cases) and consultation for physicians and paramedical personnel of the M-services and N*-functions
- Communication between referral and referring hospitals should be optimized (e.g. spontaneously daily briefing by telephone, e-mail)
- Clearly defined criteria for transfer and re-transfer have to be established, and should be discussed with societies of paediatricians and obstetricians/gynaecologists before implementation
- Guidelines should be not undermining the autonomy of the physicians in regional hospitals. It should be possible to make decisions in function of available means and professional competence (fear of overregulation).
- More uniformity and consensus concerning perinatal transfer policy between P*-functions is necessary
- A better financing system for physicians in referring hospitals is needed (e.g. a code of RIZIV/INAMI for multidisciplinary communication, a number of admission for the neonate)
- \(P^* \)-functions should have a clear and active policy of retransfer
- Perinatal care in Belgium should be more regionalised
- Clear policies are needed in the area of perinatal transfer and re-transfer on the organisational, financial and legal level.

It has to be emphasized that these statements are individual comments of obstetricians/gynaecologists and paediatricians who participated in the retrospective study.

4.2.3 Conclusions

Based on the results of this retrospective study, following rates of maternal and neonatal (re)transfer were calculated for the year 2004

<table>
<thead>
<tr>
<th></th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>In utero transfer</td>
<td>90 transfers/10,000 deliveries</td>
</tr>
<tr>
<td>Maternal retransfer</td>
<td>28 transfers/10,000 deliveries</td>
</tr>
<tr>
<td>Neonatal transfer (outborns)</td>
<td>143 transfers/10,000 deliveries</td>
</tr>
</tbody>
</table>

The in utero transfer rate in Belgium can be estimated at 90/10,000 deliveries. The proportional transfer was higher for small hospitals. Out of 10,000 deliveries 143 neonatal transfers were reported. No correlation was found between the number of neonatal transfers and the number of in utero transfers.

Retransfers of pregnant women from the MIC-service to the referring M-service can be estimated at 28/10,000 deliveries. In relation to the number of IUT, it means that one third (32.7%) of the IUTs were retransferred to the original M-service. No information was available about the other IUTs: the mother can be delivered in the \(P^* \)-function after IUT or she can be discharged directly home.

The Royal Decree of 20th August 1996 provides no recommendations and modalities concerning transport systems. It is only mentioned that a transfer team should be
available for neonatal transfer. (Art 5. § 2 point 4). Further, the organisation of a maternal transfer is not specified. The retrospective study did not allow conclusions about how the maternal transfer occurred in Belgium. In the field, heads of maternal and neonatal departments did not seem to be knowledgeable about the costs and reimbursement modalities of transport. Our study shows that costs for IUT and maternal retransfer are largely unknown by the M-services and that maternal referral procedures are not well documented.

In Belgium, P*-functions have established agreements of collaboration with an M/N*-function, in order to cover for a joint total of at least 5000 deliveries per year. Also the N*-function should develop criteria for neonatal transfer and retransfer which should be concretized in an agreement with a NIC-service. Our results show that most of hospitals have indeed written agreements, but these agreements are heterogeneous, not standardized. Although we received copies of the agreements from 51.4% (54/105) hospitals with a P*-function only, we found a significant diversity in number of agreements per hospital and per P*-function. In fact, this may indicate that the concept of regionalisation of perinatal care has not been realised all over the country. There is also large variation in content of the agreements. Indications for transfer or retransfer for mother and neonate are missing in most documents.

The qualitative part of the study shows that most participants are convinced that neonates <32 weeks gestation and/or <1500 gram should be transferred in utero, however, only 50% of the participants believes that national guidelines and criteria will improve perinatal transfer policies. They also agree that when stabilisation of the obstetrical patient occur and/or gestational age of 34 weeks retransfer to the referring hospital should be organised by the P*-function.
Limitations of the study

Despite the actual analysable response rate of 82.9%, the results of this retrospective study should be interpreted with caution. In Belgium there is no standard registered data system available concerning perinatal referral patterns.

Because of the difference in health systems, thus in organisation of perinatal care between (European) countries, it was not possible to translate data from other countries to the Belgium situation. Therefore the study has to be seen as a unique nationwide experiment or pilot study. To study the perinatal referral patterns in Belgium, data collection occurred using of a semi-structured questionnaire leading to some incomplete response rate and missing data. Furthermore data analysis is based on self reported data from the heads of departments of M-service and N*-function which can be threaten the validity of the study. The sample size was rather small to perform statistical analysis, because of the relative small number of hospitals in Belgium. A longer registration period may be increase the validity of data.

In summary, out of the data of the retrospective study and taking the limits of the study into account, we can conclude that 1) most surveyed health care providers in the field are knowledgeable about the transfer policies laid down in the Royal Decree in 1996, 2) that they are convinced that pregnant women at risk for very preterm labour (<32 weeks gestation and/or with an expected birth weight of <1500 g) should be referred to a perinatal centre, 3) that the referral rates in Belgium appear to be good, and that most hospitals adhere to the Decree, 4) that there is a lack of clear guidelines about implementation of IUT and retransfer, including clinical agreements, financial regulations for referrals and costs of transport, 5) that there is a need for better support, evaluation and monitoring of regionalized perinatal care.
4.3 Prospective study

4.3.1 Methodology

1. Setting and population

In the prospective study, hospitals with an M-service and N*-function (n= 105) or MIC-service (n=18) were included. One hospital with only a NIC-service (NIC without MIC) was excluded. Three out of the 108 eligible hospitals with M/N*-service were excluded because they have been merged with another hospital or they reported not longer having an M-service or N*-function in their hospital.

2. Design and data collection

The objective of this study was to collect on-line individual baseline information for every pregnant woman transferred and for every neonate born between 22 and 32 weeks and/or with an expected birth weight of <1500 g. In order to have precise data on transfer and re-transfer information was to be collected prospectively for a period of 1 year.

Three standard forms were developed to be filled out in the prospective study (Annex 5)

- for every mother transferred from an M-service to a MIC-unit, or if there was no maternal transfer, the reason of non-transfer. The form was filled out by the obstetrician/gynaecologist.

- for every neonate transferred from an N*-function to a NIC-unit, or if there was no maternal transfer, the reason of non-transfer. The form was filled out by the paediatrician.

- for each transferred mother from an M-service to a MIC-unit, the form was filled out by the obstetrician/gynaecologist of the MIC-unit.
For every mother transferred from an M-service to a MIC-unit two forms were to be filled out, one by the obstetrician/gynaecologist of the referring hospital (1) and one by the obstetrician/gynaecologist of the MIC-unit (3) (data control).

The prospective study started the first of September 2005 and ended the 31st of August 2006.

Inclusion criteria: all in utero transfers with a gestational age between 22 weeks and less than 32 weeks, and/or an expected birth weight less than 1500 gram. Pregnancies lower than 22 weeks or higher than 32 weeks were excluded, as well as third trimester interruptions of pregnancy (for severe fetal malformations). Due to poor quality of the data and low response rate, the results were related to data of SPE15 and MOSAIC16.

4.3.2 Results

1. Response rate

After a first evaluation at 6 months, the response rate was low and the data were of poor quality. The study team decided to call upon the hospitals and to send reminders. Finally, we managed to get a response rate of 51.4% (54/105) of the M-services, 37.1% (39/105) of the N*-functions and 61.1% (11/18) of the MIC-services (Fig. 16).
Figure 16: Response rate on the prospective study after 6 and 12 months

2. Number of deliveries

In 2004, 117.99017 deliveries were registered in Belgium. Of these, 86.179 (=73.0%) occurred in a maternity service and 31.811 (27.0%) in a maternity with MIC-service.

The data available in this prospective study is related to a total number of 45.634 deliveries in the Belgian M-services and 16.858 deliveries in the MIC-services (2004). Hence, our study represents 58.7\% (45.634 out of 86.179) of the deliveries registered in the M-services and 53.0\% (16.858 out of 31.811) in the MIC-services.

Tables 8 to 10 illustrate the distribution of the number of deliveries in 7 categories according to the size of the maternity.

17 Source: Federal Public Service, Health, Food chain safety and Environment
Table 8: Distribution of deliveries (prospective study, responses from M-service)

<table>
<thead>
<tr>
<th>Number of deliveries (category)</th>
<th>Number of hospitals within category M-service (n=54)</th>
<th>Number of deliveries (n=45,634)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-399</td>
<td>5</td>
<td>1.709 (3.7%)</td>
</tr>
<tr>
<td>400-599</td>
<td>14</td>
<td>7.384 (16.2%)</td>
</tr>
<tr>
<td>600-799</td>
<td>15</td>
<td>10.465 (22.9%)</td>
</tr>
<tr>
<td>800-999</td>
<td>8</td>
<td>6.949 (15.2%)</td>
</tr>
<tr>
<td>1000-1199</td>
<td>4</td>
<td>4.323 (9.5%)</td>
</tr>
<tr>
<td>1200-1399</td>
<td>3</td>
<td>3.814 (8.4%)</td>
</tr>
<tr>
<td>≥1400</td>
<td>5</td>
<td>10.880 (23.8%)</td>
</tr>
</tbody>
</table>

Table 9: Distribution of deliveries (prospective study, responses from N*-function)

<table>
<thead>
<tr>
<th>Number of deliveries (category)</th>
<th>Number of hospitals within category N*-function (n=39)</th>
<th>Number of deliveries (n=32,304)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-399</td>
<td>2</td>
<td>678 (2.1%)</td>
</tr>
<tr>
<td>400-599</td>
<td>11</td>
<td>5.876 (18.2%)</td>
</tr>
<tr>
<td>600-799</td>
<td>14</td>
<td>9.827 (30.4%)</td>
</tr>
<tr>
<td>800-999</td>
<td>4</td>
<td>3.644 (11.3%)</td>
</tr>
<tr>
<td>1000-1199</td>
<td>2</td>
<td>2.169 (6.7%)</td>
</tr>
<tr>
<td>1200-1399</td>
<td>3</td>
<td>3.861 (12.0%)</td>
</tr>
<tr>
<td>≥1400</td>
<td>3</td>
<td>6.249 (19.3%)</td>
</tr>
</tbody>
</table>

Table 10: Distribution of deliveries (prospective study, responses from P*-function)

<table>
<thead>
<tr>
<th>Number of deliveries (category)</th>
<th>Number of hospitals within category MIC (n=11)</th>
<th>Number of deliveries (n=31811)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-399</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400-599</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>600-799</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>800-999</td>
<td>2</td>
<td>1.768 (5.6%)</td>
</tr>
<tr>
<td>1000-1199</td>
<td>1</td>
<td>1.078 (3.4%)</td>
</tr>
<tr>
<td>1200-1399</td>
<td>2</td>
<td>2.506 (7.9%)</td>
</tr>
<tr>
<td>≥1400</td>
<td>6</td>
<td>11.506 (36.2%)</td>
</tr>
</tbody>
</table>
3. Validation of the findings

Because of the low response rates and because of the concern of inaccuracies in the files received from the hospitals, we decided to contact the principal investigators of 2 other datasets, (1) in Flanders (SPE) and (2) in Europe the MOSAIC project, with the objective to validate the broad range of our findings.

In order to provide a better understanding of the 2 projects, we hereby summarize them:

A. The MOSAIC project

The MOSAIC studies the organisation of health care for very preterm births and its impact on access to care and severity-adjusted health outcomes for all births occurring before 32 weeks gestation in 10 regions with diverse perinatal health system in 9 European countries.

In each region, two parallel studies gather information on very preterm births and health services: (1) a prospective population-based cohort study of very preterm births in 2003 and (2) a survey of maternity and neonatal units, based on the year 2002.

The population-based cohort study of very preterm births includes all very preterm live-births and still-births occurring between 22 and 31 completed weeks' gestation in maternity units in each participation region18. Each region, of which Flanders is one, collects information on a population of between 40,000 and 60,000 births a year.

B. The SPE data

The SPE registration is a regional registration, covering the whole of Flanders. Particularly important is the fact that all Flemish hospitals collaborate on a voluntary

18 One of the participation regions is Flanders. The region of Flanders (Northern Belgium) covers 13524 km² and has 6 millions inhabitants. During the study period (1 January 2003-31 December 2003) 60406 births took place, of which 793 cases between 22 and 31 completed weeks (1.3%)
basis to the registration, so that it encompasses all deliveries occurring in Flanders, except for the very small number of home deliveries. All data refer to stillbirths or live births of infants with a weight of 500 gram or more. The definitions are in agreement with the WHO-rules.

During the first 4 months of the prospective study (September-December 2005) we received forms from 32 M-services (50%) in Flanders. Only 4 pregnant women meeting the referral criteria were reported as not being transferred to a tertiary centre. However, in the same time period the SPE database revealed a total of 42 very premature babies born in an M-unit, hence born to mothers who should have been transferred while pregnant indicating that our prospective study captured only 4 out of 42 true cases (9.5%), resulting in an unacceptable low coverage rate despite multiple efforts to contact the participating units.

The prospective study about the neonatal transfer from an N*-function to a NIC-unit had a response rate of only 37.1% (39/105), also too low to draw valid conclusions. Also, the data control function between the forms received from maternity hospitals with M-service and those from the MIC-units was too low.

After discussing the results in the plenary meeting of the College of physicians of the Mother and Newborn the 23rd of October 2006, the writing committee found the response rate for both groups (M-services and N*-functions) unacceptable low, not allowing the study to continue. Therefore, we decided to stop the prospective part of the study in the general maternities and to concentrate on the forms filled in the MIC-units only, where a higher response rate was obtained. The response rate of the forms from the MIC-units was 61.1% (11/18 of the MIC-units).
4. In utero transfer (IUT) in the regions

Of the 18 MIC-units in Belgium, only 9 recorded the required data during a whole year. Two of the MIC-units provided a six month registration and another 7 declined registration (table 11).

Table 11: Number of MIC-units who participated in the prospective study

<table>
<thead>
<tr>
<th>MIC-units</th>
<th>n=11</th>
</tr>
</thead>
<tbody>
<tr>
<td>one year registration</td>
<td>9/18 (50.0%)</td>
</tr>
<tr>
<td>six month registration</td>
<td>2/18 (11.1%)</td>
</tr>
<tr>
<td>no registration</td>
<td>7/18 (38.9%)</td>
</tr>
</tbody>
</table>

Both Flanders and Wallonia had 4 MIC-units who participated in the recording. There are 458 cases with in utero transfer, from one hospital to another hospital or from an M-service to a MIC-unit. In Flanders there were 251 cases (54.8%) and Wallonia had 27.5% with 126 cases. Also 2 MIC-units from Brussels registered, they had 81 cases (17.7%).

Table 12: The different regions and their cases (prospective study)

<table>
<thead>
<tr>
<th>Regions</th>
<th>MIC-units with registration</th>
<th>MIC-units total</th>
<th>%</th>
<th>cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brussels</td>
<td>2</td>
<td>6</td>
<td>33.3</td>
<td>81</td>
</tr>
<tr>
<td>Flanders</td>
<td>5</td>
<td>7</td>
<td>71.4</td>
<td>251</td>
</tr>
<tr>
<td>Wallonia</td>
<td>4</td>
<td>5</td>
<td>80.0</td>
<td>126</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>18</td>
<td>61.1</td>
<td>458</td>
</tr>
</tbody>
</table>
5. Distribution of gestational age

Figure 17 provides gestational age at the time of IUT for the prospective study and the MOSAIC study (Flanders) (Fig 17)

Figure 17: Distribution of gestational age from intra-uterine transfers to a MIC-unit: prospective study (n=458) and MOSAIC-study (Flanders) (n=793)

6. Indications for in utero transfer

In 45.2% (207/458) of the cases in utero transfers took place because of very preterm labour. Another frequent indication is PPROM (preterm premature rupture of membranes) (24.7% or 113/458). In 14.2% (65/458) of the cases the reason to transfer is a multiple birth. Pre-eclampsia and eclampsia together count for 11.8% (54/458). Many cases (22.5% or 103/458) mention also other reasons for in utero transfer. These were recoded in following 3 categories: maternal disease, HELLP, and foetal disease. The largest indication is maternal diseases with 12.4% (57/458) (Table 13)

Comparing the prospective data and the MOSAIC study (Flanders) we find that both studies have nearly the same percentage for the most common indications for in
uterus referral: 45.2% for preterm labour, 24.7% PPROM, 11.8% for pre-eclampsia, 8.5% IUGR (Table 14)

Table 13: Reasons for in utero transfer (prospective study)

<table>
<thead>
<tr>
<th>Reasons for in utero transfer</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-eclampsia/eclampsia</td>
<td>54</td>
<td>11.8</td>
</tr>
<tr>
<td>PPROM</td>
<td>113</td>
<td>24.7</td>
</tr>
<tr>
<td>chorioamnionitis</td>
<td>16</td>
<td>3.5</td>
</tr>
<tr>
<td>preterm labour</td>
<td>207</td>
<td>45.2</td>
</tr>
<tr>
<td>diabetes</td>
<td>4</td>
<td>0.9</td>
</tr>
<tr>
<td>birth weight < 1500 g</td>
<td>4</td>
<td>0.9</td>
</tr>
<tr>
<td>IUGR</td>
<td>39</td>
<td>8.5</td>
</tr>
<tr>
<td>low inserted placenta</td>
<td>26</td>
<td>5.7</td>
</tr>
<tr>
<td>other placental anomaly</td>
<td>17</td>
<td>3.7</td>
</tr>
<tr>
<td>multiple birth</td>
<td>65</td>
<td>14.2</td>
</tr>
<tr>
<td>other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maternal disease</td>
<td>57</td>
<td>12.4</td>
</tr>
<tr>
<td>HELLP</td>
<td>14</td>
<td>3.1</td>
</tr>
<tr>
<td>Foetal disease</td>
<td>32</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Table 14: Summary of the most frequent reasons for in utero transfer (prospective study versus MOSAIC-Flanders)

<table>
<thead>
<tr>
<th>Reasons for in utero transfer</th>
<th>Prospective study (%)</th>
<th>MOSAIC-study (Flanders) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>preterm labour</td>
<td>45.2</td>
<td>47.2</td>
</tr>
<tr>
<td>PPROM</td>
<td>24.7</td>
<td>26.6</td>
</tr>
<tr>
<td>Pre-eclampsia/eclampsia</td>
<td>11.8</td>
<td>11.3</td>
</tr>
<tr>
<td>IUGR</td>
<td>8.5</td>
<td>13.0</td>
</tr>
<tr>
<td>HELLP</td>
<td>3.1</td>
<td>5.7</td>
</tr>
</tbody>
</table>

7. Retransfer of the mother

Of the 458 in utero transfers, 112 (24.5%) were retransferred before delivery (Table 15). In approximately 74.0% of the in utero transfers, the mother remained in the MIC-units until she gave birth. Some data were missing (1.5% or 7/458).
Table 15: Number of retransfers (prospective study)

<table>
<thead>
<tr>
<th>Retransfer</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>112</td>
<td>24.5</td>
</tr>
<tr>
<td>no</td>
<td>339</td>
<td>74.0</td>
</tr>
<tr>
<td>missing</td>
<td>7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

As already mentioned, 112 mothers were retransferred; 41 (36.6%) of them went to their original M-service, but the majority went home (62.5% or 70/112). In 1 case the mother was retransferred to another hospital on demand (Fig 18).

Of the 41 mothers who went to their original M-service, the mean stay in the MIC-unit was 18.9 ± 12.7 days with a range of 1 to 46 days. The mean reason for transfer was preterm labour in 68% of the cases. In contrast, the mothers who were retransferred at home stayed on average 8.8 ± 10.9 days in the MIC-units. Here the main reasons for in utero transfer were preterm labour (51%) and maternal diseases (32%).

Figure 18: Maternal retransfers (prospective study)
8. No retransfer

Of the 339 women (74.0%) who stayed in a MIC-unit, 334 gave birth in the MIC-unit. There are 4 missing values and one case was still on the MIC-unit waiting for the delivery. The mean stay between arrival in MIC-unit and delivery was 7.4 ± 11.1 days (range 0-79). The reasons for transfer, without retransfer, were 41% for preterm labour, 31% for PPROM, 16% for multiple birth and 15% for pre-eclampsia. Finally 50% of the deliveries were Caesarean sections.

9. Comparison with the MOSAIC project (Flanders)

In the MOSAIC study (Flanders) 44.5% of the cases has a maternal transfer during the pregnancy. Most of them (30.8%) are transferred from an M-service, after a hospitalisation of at least 24 hours, to a MIC-unit. This definition is used by the MOSAIC project. The other 13.7% are called ‘ambulatory transfers’ (Table 16).

<table>
<thead>
<tr>
<th>Maternal transfers (MOSAIC-Flanders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>IUT with previous hospitalisation</td>
</tr>
<tr>
<td>IUT without hospitalisation</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

IUT from MIC -> to MIC = 10

From the 793 babies born between 22 weeks and 31 weeks gestational age, 31% died before or just after the delivery. The other 69% were transferred to a NIC-unit. From those 547 babies transferred, 463 (84.6%) are survivors and have left the NIC-unit or the N*-function. 84 (15.4%) died during the neonatal period.

<table>
<thead>
<tr>
<th>Outcome of delivery (MOSAIC-Flanders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>Termination of pregnancy</td>
</tr>
<tr>
<td>fetal death before labour</td>
</tr>
<tr>
<td>Intrapartum death</td>
</tr>
<tr>
<td>death in delivery room</td>
</tr>
<tr>
<td>NICU admissions</td>
</tr>
<tr>
<td>neonatal death</td>
</tr>
<tr>
<td>NICU survivors</td>
</tr>
</tbody>
</table>
10. Comparison with SPE

The database of the SPE included all births (still- and live births) from 500 gram or more in the Community of Flanders in 2004. A selection was made for all births between 22 and 31 weeks completed weeks’ gestation. Out of the 100% hospital registration, 778 children were born: 614 of them were liveborns and 164 stillbirths.

From the 614 live births 583 (95.0%) were transferred, 97% to a NIC-unit and 3% to the local N*-function adjacent to the M-service.

Figure 19: Very preterm babies (SPE)

Table 18 describes the gestational age, the birth weight and the time between birth and death, for the 31 non transferred cases. Twenty of them died in less than 20 minutes, all of them within two hours.
Nineteen (3%) babies stayed in the same hospital of the M-service and were transferred to the local N*-function. In table 19, gestational age, birth weight and time of early neonatal death were listed for these 19 infants. Two children born at a gestational age less than 30 weeks die shortly after the delivery. The other 17 of whom 14 have a birth weight higher than 1500 gram, stay in the N*-function. One of the 3 babies with a birth weight lower than 1500 gram die after 55 minutes, the 2 others 1275 gram and 1355 gram survived.

Table 18: Not transferred babies after delivery (SPE)

<table>
<thead>
<tr>
<th>Gest. age</th>
<th>weight</th>
<th>Early neonatal death</th>
<th>Gest.</th>
<th>weight</th>
<th>Early neonatal death</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>550</td>
<td>0:16</td>
<td>24</td>
<td>840</td>
<td>0:11</td>
</tr>
<tr>
<td>22</td>
<td>535</td>
<td>0:20</td>
<td>24</td>
<td>620</td>
<td>1:20</td>
</tr>
<tr>
<td>22</td>
<td>550</td>
<td>0:01</td>
<td>24</td>
<td>600</td>
<td>0:05</td>
</tr>
<tr>
<td>22</td>
<td>440</td>
<td>0:01</td>
<td>24</td>
<td>920</td>
<td>0:05</td>
</tr>
<tr>
<td>22</td>
<td>508</td>
<td>0:05</td>
<td>24</td>
<td>430</td>
<td>0:01</td>
</tr>
<tr>
<td>23</td>
<td>510</td>
<td>0:01</td>
<td>24</td>
<td>600</td>
<td>0:02</td>
</tr>
<tr>
<td>23</td>
<td>670</td>
<td>1:00</td>
<td>24</td>
<td>800</td>
<td>0:15</td>
</tr>
<tr>
<td>23</td>
<td>700</td>
<td>0:25</td>
<td>24</td>
<td>800</td>
<td>0:10</td>
</tr>
<tr>
<td>23</td>
<td>480</td>
<td>0:01</td>
<td>25</td>
<td>580</td>
<td>0:10</td>
</tr>
<tr>
<td>23</td>
<td>560</td>
<td>0:01</td>
<td>26</td>
<td>800</td>
<td>0:17</td>
</tr>
<tr>
<td>23</td>
<td>540</td>
<td>0:01</td>
<td>26</td>
<td>800</td>
<td>1:46</td>
</tr>
<tr>
<td>23</td>
<td>570</td>
<td>0:02</td>
<td>27</td>
<td>1040</td>
<td>1:50</td>
</tr>
<tr>
<td>23</td>
<td>530</td>
<td>0:40</td>
<td>27</td>
<td>1030</td>
<td>1:30</td>
</tr>
<tr>
<td>23</td>
<td>620</td>
<td>1:01</td>
<td>30</td>
<td>1420</td>
<td>0:24</td>
</tr>
<tr>
<td>23</td>
<td>500</td>
<td>1:20</td>
<td>22</td>
<td>450</td>
<td>0:15</td>
</tr>
</tbody>
</table>

Early neonatal weight Gest. age
<table>
<thead>
<tr>
<th>Early neonatal death</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:16</td>
<td>550</td>
</tr>
<tr>
<td>0:20</td>
<td>535</td>
</tr>
<tr>
<td>0:01</td>
<td>550</td>
</tr>
<tr>
<td>0:01</td>
<td>440</td>
</tr>
<tr>
<td>0:05</td>
<td>508</td>
</tr>
<tr>
<td>0:01</td>
<td>510</td>
</tr>
<tr>
<td>1:00</td>
<td>670</td>
</tr>
<tr>
<td>0:25</td>
<td>700</td>
</tr>
<tr>
<td>0:01</td>
<td>480</td>
</tr>
<tr>
<td>0:01</td>
<td>560</td>
</tr>
<tr>
<td>0:01</td>
<td>540</td>
</tr>
<tr>
<td>0:02</td>
<td>570</td>
</tr>
<tr>
<td>0:40</td>
<td>530</td>
</tr>
<tr>
<td>1:01</td>
<td>620</td>
</tr>
<tr>
<td>1:20</td>
<td>500</td>
</tr>
</tbody>
</table>
Table 19: Babies transferred to N*-function (SPE)

<table>
<thead>
<tr>
<th>weeks</th>
<th>n</th>
<th>birth weight (g)</th>
<th>neonatal death</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1</td>
<td>670</td>
<td>yes (2:30, anencephaly)</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>870</td>
<td>yes (0:50, low birth weight)</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>1275, 1505, 185</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>14</td>
<td>710, 1355, 1560, 1630, 1770, 1920, 1950</td>
<td>yes (0:55, trisomie 18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010, 2050, 2070, 2145, 2215, 2240</td>
<td>yes (after 8 days)</td>
</tr>
</tbody>
</table>

Of the 564 live births transferred to a NIC-unit, 76% are born in a MIC-unit (inborns) and 24% in an M-service (outborns).

In table 20 and figure 20 the numbers of early neonatal death\(^{19}\) born in the MIC-units (inborns) and born in M-service (outborns) are illustrated.

Table 20: Early neonatal death of babies born in a MIC-unit and M-service (SPE)

<table>
<thead>
<tr>
<th>Live births (n=614)</th>
<th>Gestational age at birth</th>
<th>Number of early neonatal death (n=51)</th>
<th>Number of live births (n=469)</th>
<th>Number of early neonatal death (n=33)</th>
<th>Number of live births (n=145)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>24</td>
<td>11</td>
<td>18</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>31</td>
<td>25</td>
<td>7</td>
<td>25</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>46</td>
<td>26</td>
<td>6</td>
<td>35</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>71</td>
<td>27</td>
<td>6</td>
<td>61</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>77</td>
<td>28</td>
<td>3</td>
<td>66</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>77</td>
<td>29</td>
<td>2</td>
<td>58</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>123</td>
<td>30</td>
<td>8</td>
<td>96</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>144</td>
<td>31</td>
<td>0</td>
<td>102</td>
<td>2</td>
<td>42</td>
</tr>
</tbody>
</table>

\(^{19}\) Live borns who died within 7 days after birth
From the 614 liveborn babies with a gestational age lower than 32 weeks 76.4% (469/614) are inborns and 23.6% are outborns (145/614). It has to be noticed that in utero transfer has not necessarily occurred at the same gestational age at birth, but sometimes at a former gestational age (see supra p56/point 8) Early neonatal death occurred by 11% of the inborns and 23% of the outborns. Early neonatal death is nearly the same if the place of birth is a MIC-unit or an M-service if the gestational age is lower than 25 weeks. However between 26 and 28 weeks' gestation (counting for 31.6% or 194/614 of the very preterm babies) there are 22% less early neonatal deaths in MIC-units (15/162 or 9.3%) than in M-services (10/32 or 31.3%).

Figure 20: Early neonatal death from babies born in a MIC-unit and M-service (SPE study)

4.3.3 Conclusions

The challenge of conducting a large prospective on-line study has been underestimated. Because of the low response the data were compared with data from other studies (SPE, MOSAIC-Flanders). One of the reasons might have been the extra administrative burden for the maternity and neonatal units where staff has
to fill out many questionnaires from regional, federal and European authorities. They have the feeling that the same information is requested over and over again without much coordination between data collectors.

The data of the participating MIC-units were acceptable and allowed data comparison with other perinatal datasets.

The findings of the prospective study are based on 423 cases between 22 and 32 weeks’ gestation. The main reasons for transfer were preterm labour (45%), PPROM (25%), multiple birth (14%) and pre-eclampsia (12%). Of the 423 in utero transfers, 26% were retransferred before delivery. In 74% of the in utero transfers, the mother remained in the MIC-units until she gave birth.

There is little evidence for substantial gain in case of IUT before 25 weeks’ gestation, as early neonatal death is nearly the same irrespective of the place of birth (MIC or M-service). A significant reduction of neonatal mortality and morbidity can be obtained in the vulnerable period of pregnancy (26-28 weeks) when delivery takes place in a referral unit (table 20 and figure 20). In some cases, IUT can be indicated at 23-24 weeks’ gestation to prolong the time in utero to offer specific care in the MIC-unit and to provide intensive neonatal care if delivery take place between 26-28 week’s gestation or after this period of very preterm deliveries.
5 Overall Conclusions

From a thorough review of the literature, it is concluded that regionalisation of perinatal care and referral of high-risk pregnant women to a perinatal care centre can substantially reduce perinatal mortality and neonatal morbidity.

During the last 3 decades many western countries have made efforts to regionalize and optimize perinatal care. In Belgium, a Royal Decree has outlined the concept of maternal and neonatal referral in 1996, yet specific guidelines and actions of implementation and monitoring of maternal referral are lacking.

Therefore, the College of physicians of Mother and Newborn decided to embark on this project in order to inform and advise the Ministry of Health on the organisation of perinatal transfer in Belgium.

Overall conclusions emanating not only from this project, but also from existing databases in Belgium or Flanders on perinatal epidemiology:

1. National data on perinatal care are difficult to obtain in a standardized and systematic way. Since more than a decade, Flanders has developed a comprehensive regional database linked with the birth certificate, allowing monitoring of care, similar to the medical birth registers of the Nordic countries. This system ensures both the routine collection of vital statistics and ad hoc surveys on topics which are considered of interest by research committees. Currently neither of these mechanisms are available in Wallonia and birth certificates only are available for Brussels.

2. Executing the project was more difficult than anticipated, especially the prospective study where participation was low, probably due to administrative overlap and clinical overload. It is important that hospital managers and planners include time for surveys, audits and evaluation of practice, within the time schedule of the medical staff.
3. After comparing the data extracted from the retrospective study and the limited figures of the prospective study with the SPE, MOSAIC and NIC-audit datasets, it is concluded that the practice of in utero transfer of high-risk pregnancies in Belgium is progressively increasing over the last decade (± 300-500 IUTs/year in the nineties and ± 800-1.000 IUTs/year during the last 5 years)\(^{20}\). One decade ago postnatal referral of VLBW-babies was still important (up to 40% of all VLBW-admissions in Belgian NICUs during the nineties). Since the last 2 years (2005-06) the postnatal referral rate of VLBW-babies has decreased to nearly 15% or less. Data from SPE and NIC-audit show that nowadays nearly 90% of VLBW-infants are cared for in one of the 19 NICUs, most frequently admitted as inborns after in utero transfer. However there is still room for improvement as far as prenatal referral of high-risk pregnancies is concerned, especially during the highly vulnerable period of pregnancy between 26 and 28 weeks’ gestation. At present, perinatal referrals consist approximately of one third of in utero transfers (± 800-1.000/year\(^{21}\) or 90/10.000\(^{22}\) deliveries) and of two thirds of neonatal transfers (± 1.500-1.800/year\(^{21}\) or 140/10.000\(^{22}\) deliveries). Optimal perinatal care is achievable in Belgium by a further inversion of this ratio in favour of maternal referral.

4. The importance of prenatal obstetrical care in high-risk pregnancies is stressed by the observation that nearly one third of all maternal referrals are retransferred to the original maternity hospital before delivery.

5. Most obstetricians/gynaecologists and paediatricians support the concept of regionalized care and express the wish to be involved in the planning and organisation through their professional and scientific organisations.

\(^{20}\) IUT = intrauterine transfer *stricto sensu* i.e. resulting in the admission of the newborn infant(s) in the NICU; data collected by the Belgian NICUs from 1990 until now (Prof. dr. Gaston Verellen).

\(^{21}\) NIC-audit

\(^{22}\) Retrospective part of the study
6. Following **constraints and drawbacks** have been identified and need to be addressed in order to improve the quality of perinatal care:

- Maternal transport modalities and responsibilities are not well elaborated
- Communication tools between referring and referral hospital are not well established;
- Financial compensations for referring institutions and physicians are not in place;
- Tools for monitoring quality of maternal transfer are insufficiently developed;
- Foetomaternal indications for prenatal transfer needs further elaboration;
6 Recommendations

Based on literature, various Belgian perinatal databases and our own observations and conclusions, we hereby recommend the national health authorities to develop strategies for prenatal transfer as part of a national perinatal program:

1. **Development of a national register** on perinatal health linked with birth certificates, in collaboration with regional authorities, to allow monitoring, quality control and improvement of perinatal policies, as is already achieved in the northern part of the country. In addition, proper registration will allow assessing the needs for NIC/MIC beds in the country as well as their geographical spread.

2. **Organisation of maternal transport systems** and defining reimbursement modalities for maternal transport and retransfer. Financial compensation will have to be addressed for the referring institutions and physicians. A mandatory on-line registration of perinatal transfer is a useful tool to improve quality control and set conditions for reimbursement or financial compensations.

3. **Development of operational strategies** by the 1) Implementation of standardized agreements mentioning minimal criteria and modalities for prenatal, as well as for postnatal transfer and retransfer, allowing for local specificities; 2) Measures to encourage an active policy of in utero transfer, including operational definitions with indications and guidelines; 3) Organisation of structured communication between collaborating institutions; 4) Modalities for postgraduate training of the medical and nursing staff of the referring hospital to keep their clinical knowledge and experience in the management of high-risk pregnancies and neonates up to date 5) Measures to encourage fusion of small maternities (wherever possible) taken into account the critical mass needed for appropriate medical and nursing staff and expertise, have to be worked out.
4. **Creation of a consultative platform** with all stakeholders involved, including health authorities as well as scientific and professional societies, assess the national database and birth certificates and further elaborated guidelines of good practice as well as operational definitions for perinatal (re)transfer.

5. **Further health system research on perinatal transfer in Belgium** to be carried out by an expert team, focussing on indications for perinatal (re)transfer, organisation of MIC-services, evaluation of current transport systems as well as effectiveness efficacy, costs and financial compensation systems.

6. **Creation of a consultative platform** with the involvement of the representatives of all stakeholders, authorities, scientific and professional societies to develop good practical guidelines as well as operational definitions for perinatal (re)transfer

7. **Further health system research on perinatal transfer policy in Belgium** should be carried out by an expert team, in particular indications for perinatal (re)transfer, the organisation of the MIC-service, evaluation of current transport systems, etc.
7 Reference List

8 Annexes

Annex 1: List of figures
Annex 2: List of tables
Annex 3: List of abbreviations
Annex 4: Retrospective study questionnaire
Annex 5: Prospective study questionnaire
8.1 List of figures

Figure 1: Neonatal mortality in Europe 1969-2004 (EUROSTAT) 9
Figure 2: Flow chart selection of the study population 26
Figure 3: Correlation between number of in utero transfers and number of neonatal transfers (2004) 31
Figure 4: Correlation between the ratio “IUT-neonatal transfer” and number of deliveries (2004) 31
Figure 5: Number of agreements per hospital 35
Figure 6: Number of agreements per P*-function 35
Figure 7: National guidelines and criteria are necessary for an optimal policy of transfer and retransfer 37
Figure 8: Standardization of perinatal policy will bring benefits from a medical point of view 37
Figure 9: Standardization of perinatal policy will bring benefits from a social point of view (mother and family) 38
Figure 10: Standardization of perinatal policy will bring benefits from a financial point of view 38
Figure 11: Neonates <32 weeks gestation and/or <1500 grams should be transferred in utero to a P*-function 39
Figure 12: Stabilisation of the obstetrical problem and/or a gestational age of 34 weeks are good criteria for retransfer 39
Figure 13: The transfer of a high-risk pregnancy is a multidisciplinary decision of paediatricians and obstetricians/gynaecologists of both referring hospital and P*-function 40
Figure 14: In utero transfer is preferred above neonatal transfer, except in case of an imminent threatened delivery 40
Figure 15: The structured organisation of perinatal care has an important influence on neonatal morbidity and mortality 41
Figure 16: Response rate on the prospective study after 6 and 12 months 47
Figure 17: Distribution of gestational age from in utero transfers to a MIC-unit: prospective study and MOSAIC-study (Flanders) 52
Figure 18: Maternal retransfers (prospective study) 54
Figure 19: Very preterm babies (SPE) 56
Figure 20: Early neonatal death of babies born in a MIC-unit and M-service (SPE) 59
8.2 List of tables

Table 1: Government policies and recommendations from scientific or professional societies concerning perinatal transports (EUROPET, 1997-1999) 18
Table 2: Inborn rates of the very preterm population (<32 weeks) hospitalised in larger NICUs in Europe 22
Table 3: Distribution of deliveries (retrospective study) 27
Table 4: Distribution of IUTs in relation to the number of deliveries (category) 28
Table 5: Distribution of neonatal transfers in relation to the number of deliveries (category) 30
Table 6: Nine statements concerning perinatal referral policy 36
Table 7: Opinions of the M-service and N*-function regarding perinatal referral policy 36
Table 8: Distribution of deliveries (prospective study, response from M-service) 48
Table 9: Distribution of deliveries (prospective study, response from N*-function) 48
Table 10: Distribution of deliveries (prospective study, response from MIC-service) 48
Table 11: Number of MIC-units who participated in the prospective study 51
Table 12: The different regions and their cases (prospective study) 51
Table 13: Reasons for in utero transfer (prospective study) 53
Table 14: Summary of the most frequent reasons for transfer (prospective study versus MOSAIC Flanders) 53
Table 15: Number of retransfers (prospective study) 54
Table 16: Maternal transfers (MOSAIC-Flanders) 55
Table 17: Outcome of delivery (MOSAIC-Flanders) 55
Table 18: Not transferred babies after delivery (SPE) 57
Table 19: Babies transferred to N*-function (SPE) 58
Table 20: Early neonatal death of babies born in a MIC-unit and M-service (SPE) 58
8.3 List of abbreviations

AMA = American Medical Association
EBM = Evidence Based Medicine
EUROPET = EUROpean network for PErinatal Transport
EUROSTAT = EUROpean STATistics
FSP = Federal Public Service
HELLP = Haemolysis Elevated Liver enzymes and Low Platelets
IUGR = Intra Uterine Growth Restriction
IUT = In Utero Transfer
MIC = Maternal Intensive Care
MOSAIC = Models of Organising Access to Intensive Care for very preterm babies
NIC = Neonatal Intensive Care
NICU = Neonatal Intensive Care Unit
PPROM = Preterm Premature Rupture Of Membranes
PROM = Prelabour Rupture Of Membranes
SIDS = Suddenly Infant Death Syndrome
SPE = Studiecentrum voor Perinatale Epidemiologie
VLBW = Very Low Birth Weight
8.4 Retrospective study questionnaire

ENQUÊTE COLLEGE MOEDER/PASGEBORENE

Materniteit & neonatologie
Deel voor gynaecologen

LUIK 1. Algemene vragen (kwantitatief luik)

IN TE VULLEN DOOR GYNAECOLOG

Hoeveel bevallingen hadden plaats in uw dienst in de loop van 2004?

• Aantal bevallingen verricht door de gynaecoloog?
• Aantal bevallingen verricht door de huisarts?

Hoeveel gynaecologen zijn obstetrisch actief in uw dienst?

Aantal intra-uteriene doorverwijzingen in 2004?
Aantal postnatale doorverwijzingen in 2004?
Aantal maternele terugverwijzingen in 2004?
LUIK 2. Uw beleid, menings en suggesties (kwalitatief luik)

IN TE VULLEN DOOR GYNAECOLOG

1. Beschikt uw dienst over een schriftelijk doorverwijzingsovereenkomst naar een MIC-centrum?
 Ja □ Neen □ □

 Indien ja:
 a. Gelieve ons hiervan een kopie te bezorgen
 b. Wordt het bestaande beleid meestal nageleefd door de gynaecologen van uw dienst?
 Ja □ Neen □ □

 Indien neen:
 Welke redenen kunnen hiervoor aangehaald worden?:
 Terughoudendheid van de gynaecoloog □ Ja Neen □ □
 Terughoudendheid van de pediater □ Ja Neen □ □
 Terughoudendheid van de patiënte zelf □ Ja Neen □ □
 Terughoudendheid van de familie van de patiënt □ Ja Neen □ □
 Vanuit financieel oogpunt (voor patiënte, gynaecoloog, ziekenhuis) □ Ja Neen □ □
 Terughoudendheid van de ziekenhuisdirectie □ Ja Neen □ □

 Andere hinderpalen:

2. Bevat deze overeenkomst ook terugverwijscriteria?
 Niet van toepassing □

 Indien ja:
 a. Gelieve ons hiervan een kopie te bezorgen.
 b. Werden aanwijzingen geformuleerd voor:
 1. Terugverwijzing van de patiënte gedurende de zwangerschap □ Ja Neen □ □
 2. Terugverwijzing van de patiënte na partus □ Ja Neen □ □
 c. Worden deze afspraken meestal nageleefd door het MIC-centrum?
 □ Ja Neen □ □

 Indien neen:
 Welke redenen kunnen hiervoor aangehaald worden?
IN TE VULLEN DOOR GYNAECOLOOG

1. Voorziet uw instelling een tussenkomst in de kosten voor het transport?
 a. Kosten voor doorverwijzing
 Ja □ Neen □ ? □
 b. Kosten voor terugverwijzing
 Ja □ Neen □ ? □
 c. Heeft u een idee van de grootte-orde van dit bedrag?
 Ja □ Neen □ ? □
 Indien ja, hoeveel bedraagt dit bedrag? □ Bedrag:
 □ ?

2. Werden er ooit aanvragen tot doorverwijzing geweigerd door de MIC waarmee u samenwerkt?
 Ja □ Neen □ ? □
 a. Zo ja, hoeveel doorverwijzingen werden geweigerd? Aantal:
 Indien ja:
 1. Was dit wegens een “probleem” in de MIC-dienst? Ja □ Neen □ ? □
 2. Was dit wegens een “probleem” in de NIC-dienst? Ja □ Neen □ ? □
 Indien ja, gelieve toe te lichten:

3. Welke redenen bepalen de keuze van de P*-functie (MIC en NIC).
 Gelieve te nummeren van 1 tot 7 of van 1 tot 8 (Indien optie “Andere” wordt ingevuld).
 afstand □
 voorkeur patiënt □
 beleid en organisatie van de P*-functie □
 taal □
 samenwerkingsovereenkomst met P*-functie □
 specifieke faciliteiten en capaciteiten van de P*-functie □
 plaats waar uzelf bent opgeleid □
 andere, specifieer:

4. We willen graag uw mening kennen over volgende uitspraken over perinataal doorverwijs- en terugverwijsbeleid.

Beoordeel volgende uitspraken volgens een 5-puntenschaal: 1=helemaal akkoord, 2=akkoord, 3=neutraal, geen mening, 4=niet akkoord, 5=helemaal niet akkoord. Omcirkel uw antwoord.

1. Nationale richtlijnen en criteria zijn noodzakelijk voor een optimaal perinataal doorverwijs- en terugverwijsbeleid
2. Standaardisatie in het perinataal beleid zal op medisch gebied voordelen opleveren
3. Standaardisatie in het perinataal beleid zal op sociaal gebied voordelen opleveren
4. Standaardisatie in het perinataal beleid zal op financieel gebied voordelen opleveren
5. Neonati <32 weken en/of <1500 g worden best intra-uterien getransfereerd naar een P*-centrum
6. Het wegvallen van de hoogrisicotoestand van de moeder/foetus en/of een zwangerschapsduur ≥ 34 weken, zijn goede criteria voor terugverwijzing naar het verwijzend ziekenhuis
7. Het doorverwijzen van een hoogrisico zwangere is een multidisciplinaire aangelegenheid waarbij pediater en gynaecoloog van het perifeer ziekenhuis en P*-functie betrokken zijn
8. Intra-uterien transport is te verkiezen boven postnataal transport tenzij een bevalling niet kan uitgesteld worden
9. De wijze waarop perinatale voorzieningen en diensten georganiseerd zijn, beïnvloeden in belangrijke mate de neonatale morbiditeit en mortaliteit

5. Welke suggesties heeft u voor een optimaal perinataal doorverwijzings- en terugverwijzingsbeleid in België?
LUIK 1. Algemene vragen (quantitatief luik)

IN TE VULLEN DOOR PEDIATER

Hoeveel bevallingen hadden plaats in uw dienst in de loop van 2004?
- Aantal bevallingen verricht door de gynaecoloog?
- Aantal bevallingen verricht door de huisarts?

Hoeveel pediaters zijn actief in uw dienst?

Aantal intra-uteriene doorverwijzingen in 2004?
Aantal postnatale doorverwijzingen in 2004?
Aantal neonatale terugverwijzingen in 2004?
LUIK 2. Uw huidig beleid, mening en suggesties (kwalitatief luik)

IN TE VULLEN DOOR PEDIATER

1. Beschikt uw dienst over een schriftelijke doorverwijzingsovereenkomst naar een NIC-centrum? □ Ja □ Neen □ □
 Indien ja:
 a. Gelieve ons hiervan een kopie te bezorgen
 b. Wordt deze overeenkomst meestal nageleefd door de pediaters van uw dienst? □ Ja □ Neen □ □
 Indien neen:
 Welke redenen kunnen hiervoor aangehaald worden?:

 Terughoudendheid van de pediater □ Ja □ Neen □ □
 Terughoudendheid van de gynaecoloog □ Ja □ Neen □ □
 Terughoudendheid van de patiënt zelf □ Ja □ Neen □ □
 Terughoudendheid van de familie van de patiënt □ Ja □ Neen □ □
 Vanuit financieel oogpunt (voor patiënt, pediater, ziekenhuis) □ Ja □ Neen □ □
 Terughoudendheid van de ziekenhuisdirectie □ Ja □ Neen □ □
 Andere hinderpalen:

2. Bevat deze overeenkomst ook terugverwijscriteria? □ Niet van toepassing □ Ja □ Neen □ □
 Indien ja:
 a. Gelieve ons hiervan een kopie te bezorgen.
 b. Werden aanwijzingen geformuleerd voor:

 1. Intra-uterien transport □ Ja □ Neen □ □
 2. Postnataal transport (outborns) □ Ja □ Neen □ □
 c. Worden deze afspraken meestal nageleefd door het NIC-centrum? □ Ja □ Neen □ □
 Indien neen:
 Welke redenen kunnen hiervoor aangehaald worden?

3. Zijn er aanvragen tot doorverwijzing geweigerd? □ Ja □ Neen □ ?
 b. Zo ja, hoeveel doorverwijzingen werden geweigerd? □ Aantal:

 Indien ja:
 1. Was dit wegens een overbezetting in de NIC-dienst? □ Ja □ Neen □ ?
 2. Door een ander probleem? □ Ja □ Neen □ ?

 Indien ja, gelieve toe te lichten:

 [Lege ruimte voor toe te lichtingen]

4. Welke redenen bepalen de keuze van de P*-functie (MIC en NIC).
 Gelieve te nummeren van 1 tot 7 of van 1 tot 8 (Indien optie “Andere” wordt ingevuld).

 [Lege ruimte voor nummering]
IN TE VULLEN DOOR PEDIATER

5. We willen graag uw mening kennen over betreffende volgende uitspraken over perinataal doorverwijs- en terugverwijsbeleid.

Beoordeel volgende uitspraken volgens een 5-puntenschaal: 1=helemaal akkoord, 2=akkoord, 3=neutraal, geen mening, 4=niet akkoord, 5=helemaal niet akkoord. Omcirkel uw antwoord.

1. Nationale richtlijnen en criteria zijn noodzakelijk voor een optimaal perinataal doorverwijs- en terugverwijsbeleid
2. Standaardisatie in het perinataal beleid zal op medisch gebied voordelen opleveren
3. Standaardisatie in het perinataal beleid zal op sociaal gebied voordelen opleveren
4. Standaardisatie in het perinataal beleid zal op financieel gebied voordelen opleveren
5. Neonati <32 weken en/of <1500 g worden best intraperinataal getransfereerd naar een P*-centrum
6. Het wegvallen van de hoogrisicotoestand van de moeder/foetus en/of een zwangerschapsduur ≥ 34 weken, zijn goede criteria voor terugverwissing naar het verwijzend ziekenhuis
7. Het doorverwijzen van een hoogrisico zwangere is een multidisciplinaire aangelegenheid waarbij pediater en gynaecoloog van het perifeer ziekenhuis en P*-functie betrokken zijn
8. Intra-uterien transport is te verkiezen boven postnataal transport tenzij een bevalling onvermijdelijk is of wanneer een neonaat niet te voorziene intensieve zorgen nodig heeft
9. De wijze waarop perinatale voorzieningen en diensten georganiseerd zijn, beïnvloeden in belangrijke mate de neonatale morbiditeit en mortaliteit

6. Welke suggesties heeft u voor een optimaal perinataal doorverwijs- en terugverwijsbeleid in België?
VOLET 1. Questions d’ordre général (volet quantitatif)

A REMPLIR PAR LE GYNECOLOGUE

Combien d’accouchements ont-ils été réalisés dans votre service au cours de l’année 2004 ?
 • Nombre d’accouchements réalisés par un gynécologue?
 • Nombre d’accouchements réalisés par un médecin généraliste?

Combien de gynécologues (actifs sur le plan obstétrical) travaillent-ils dans votre service?

Nombre de transferts intra-utérins au cours de l’année 2004?
Nombre de transferts maternels après accouchement au cours de l’année 2004?
Nombre de retransferts maternels au cours de l’année 2004?
VOLET 2. Votre politique, vos opinions et vos suggestions (volet qualitatif)

A REMPLIR PAR LE GYNECOLOGUE

1. Votre service dispose-t-il d’une (ou plusieurs) convention(s) écrite(s) concernant la politique de transfert en MIC?
 - Oui □ Non □ ? □

 Si oui:
 a. Veuillez-nous en adresser une copie
 b. Ces conventions sont-elles généralement respectées par les gynécologues de votre service?
 - Oui □ Non □ ? □

 Si non:
 Quelles en sont les raisons?
 - Réticences du gynécologue Oui □ Non □ ? □
 - Réticences du pédiatre Oui □ Non □ ? □
 - Réticences de la patiente Oui □ Non □ ? □
 - Réticences de la famille de la patiente Oui □ Non □ ? □
 - Raisons financières (pour la patiente, le gynécologue, l’hôpital) Oui □ Non □ ? □
 - Réticences de la direction hospitalière Oui □ Non □ ? □

 Autres obstacles:

2. Cette convention contient-elle également des critères de retransfert
 - Pas d’application □

 Si oui:
 a. Veuillez-nous en adresser une copie
 b. Ces recommandations sont-elles formulées pour:
 1. Le retransfert (ou le réadressage) de la patiente au cours de la grossesse Oui □ Non □ ? □
 2. Le retransfert (ou le réadressage) de la patiente après l’accouchement Oui □ Non □ ? □
 c. Ces accords sont-ils généralement respectés par la section MIC?
 - Oui □ Non □ ? □

 Si non:
 Quelles en sont les raisons?
A REMPLIR PAR LE GYNECOLOGUE

3. Votre institution intervient-elle au niveau des frais de transfert et de retransfert?
 a. Frais de transfert Oui □ Non □ ? □
 b. Frais de retransfert Oui □ Non □ ? □
 c. Avez-vous une idée de l’ordre de grandeur de ce remboursement? Oui □ Non □ ? □
 □ Somme:
 Si oui, quel est-il? □ ?

4. Vos demandes de transfert ont-elles parfois été refusées?
 a. Si oui, combien de demandes de transfert ont-elles été refusées? Oui □ Non □ ? □

 Si oui:
 1. A cause d’un problème au niveau du MIC? Oui □ Non □ ? □
 2. A cause d’un problème au niveau du NIC? Oui □ Non □ ? □

5. Quelles raisons déterminent-elles le choix de la fonction P* (MIC et NIC) de référence?
 Veuillez les énumérer, par ordre d’importance croissante, de 1 à 7 ou de 1 à 8 (au cas l’option « autre » est choisie)?

 Distance
 Préférence du patient
 Organisation et gestion de la fonction P*
 Langue
 Convention de collaboration avec fonction P*
 Spécificité(s) de la fonction P*
 Endroit où vous avez reçu votre formation
 Autres, spécifier:
 □ □ □ □ □ □ □
6. **Nous souhaitons connaître votre opinion concernant les affirmations suivantes :**

Donnez votre appréciation des affirmations suivantes, en utilisant une échelle graduée de 1 à 5 : 1=tout-à-fait d'accord, 2=d'accord, 3=neutre, pas d'opinion 4=pas d'accord, 5=pas du tout d'accord. Veuillez entourer votre réponse.

1. Des directives et des critères nationaux sont indispensables pour une organisation optimale des transferts et retransferts périnatals
 1 2 3 4 5

2. La standardisation de la politique de transfert périnatal apportera des avantages sur le plan médical
 1 2 3 4 5

3. La standardisation de la politique de transfert périnatal apportera des avantages sur le plan social
 1 2 3 4 5

4. La standardisation de la politique de transfert périnatal apportera des avantages sur le plan financier
 1 2 3 4 5

5. Les nouveau-nés de <32 semaines et/ou d'un poids estimé de <1500 g devraient de préférence être transférés en ante-natal vers une fonction P*
 1 2 3 4 5

6. La disparition de la situation à haut risque ayant induit le transfert de la mère /du fœtus et/ou une durée de grossesse ≥ 34 semaines sont de bons critères de retransfert vers l'institution référente.
 1 2 3 4 5

7. Le transfert d'une grossesse à haut risque est une problématique multidisciplinaire où le pédiatre et le gynécologue de l'hôpital référent et de la fonction P* sont concernés.
 1 2 3 4 5

8. Le transport foetal est préférable au transport postnatal, sauf en cas d'accouchement imminent ou lorsque l'on prévoit que le nouveau-né ne nécessitera pas de soins intensifs.
 1 2 3 4 5

 1 2 3 4 5

7. **Quelles mesures suggérez-vous pour optimaliser la stratégie de transfert périnatal en Belgique?**
VOLET 1. Questions d’ordre général (volet quantitatif)

A REMPLIR PAR LE PÉDIATRE

Combien d’accouchements ont-ils été réalisés dans votre service au cours de l’année 2004 ?
- Nombre d’accouchements réalisés par un gynécologue?
- Nombre d’accouchements réalisés par un médecin généraliste?

Combien de pédiatres sont-ils actifs dans votre service (M + N*)?

Nombre de transferts intra-utérins au cours de l’année 2004?
Nombre de transferts postnataux (nouveau-nés) au cours de l’année 2004?
Nombre de retransferts néonataux au cours de l’année 2004?
VOLET 2. Votre politique, vos opinions et vos suggestions (volet qualitatif)

A REMPLIR PAR LE PEDIATRE

1. Votre service dispose-t-il d’une (ou de plusieurs) convention(s) écrite(s) concernant la politique de transfert en NIC ?
 Oui □ | Non □ | ? □
 Si oui:
 a. Veuillez-nous adresser une copie de ces conventions
 Oui □ | Non □ | ? □
 b. Ces conventions sont-elles généralement respectées par les pédiatres de votre service?
 Oui □ | Non □ | ? □
 Si non:
 Quelles en sont les raisons?:
 Réticences du pédiatre Oui □ | Non □ | ? □
 Réticences du gynécologue Oui □ | Non □ | ? □
 Réticences de la patiente Oui □ | Non □ | ? □
 Réticences de la famille de la patiente Oui □ | Non □ | ? □
 Raisons financières (pour le patient, le pédiatre, l’hôpital) Oui □ | Non □ | ? □
 Réticences de la direction hospitalière Oui □ | Non □ | ? □

Autres obstacles:

2. Cette convention contient-elle également des critères de retransfert
 Pas d’application □ | Oui □ | Non □ | ? □
 Si oui:
 a. Veuillez-nous en adresser une copie
 Oui □ | Non □ | ? □
 b. Ces recommandations sont-elles formulées pour:
 1. Les transferts intra-uterins Oui □ | Non □ | ? □
 2. Les transferts postnatals (outborns) Oui □ | Non □ | ? □
 c. Ces accords sont-ils généralement respectés par le service NIC ? Oui □ | Non □ | ? □
 Si non:
 Quelles en sont les raisons?
A REMPLIR PAR LE PEDIATRE

3. Vos demandes de transfert ont-elles parfois été refusées ?
 a. Si oui, combien de fois?

 Si oui:
 1. A cause d’une surpopulation au niveau du NIC? Oui □ Non □ ? □
 2. À cause d’un autre problème? Oui □ Non □ ? □

Si oui, merci de nous éclairer sur ce problème

4. Quelles raisons déterminent-elles le choix de la fonction P* (MIC et NIC) de référence?
 Veuillez les énumérer, par ordre d’importance croissante de 1 à 7 ou de 1 à 8 (dans le cas où l’option «autres» est choisie)?

 Distance
 Préférence du patient
 Organisation et gestion de la fonction P*
 Langue
 Convention de collaboration avec la fonction P*
 Spécificité de la fonction P*
 Service où vous avez fait votre formation
 Autres:
A REMPLIR PAR LE PEDIATRE

5. **Nous souhaitons connaître votre opinion concernant les affirmations suivantes :**

Donnez votre appréciation des affirmations suivantes, en utilisant une échelle graduée de 1 à 5 : 1=tout-à-fait d'accord, 2=d'accord, 3=neutre, pas d'opinion 4=pas d'accord, 5=pas du tout d'accord. Veuillez entourer votre réponse.

1. Des directives et des critères nationaux sont indispensables pour une organisation optimale des transferts et retransferts périnatals
2. La standardisation de la politique de transfert périnatal apportera des avantages sur le plan médical
3. La standardisation de la politique de transfert périnatal apportera des avantages sur le plan social
4. La standardisation de la politique de transfert périnatal apportera des avantages sur le plan financier
5. Les nouveau-nés de <32 semaines et/ou d’un poids estimé de <1500 g devraient de préférence être transférés en ante-natal vers une fonction P*
6. La disparition de la situation à haut risque ayant induit le transfert de la mère /du fœtus et/ou une durée de grossesse > 34 semaines sont de bons critères de retransfert vers l'institution référente.
7. Le transfert d’une grossesse à haut risque est une problématique multidisciplinaire où le pédiatre et le gynécologue de l’hôpital référant et de la fonction P* sont concernés.
8. Le transport foetal est préférable au transport postnatal, sauf en cas d'accouchement imminent ou lorsque l'on prévoit que le nouveau-né ne nécessitera pas de soins intensifs.
9. L’organisation des soins périnatals a une influence importante sur la mortalité et la morbidité périnatales.

6. **Quelles mesures suggérez-vous pour optimaliser la stratégie de transfert périnatal en Belgique?**
8.5 Prospective study questionnaire

Volgnummer:

LUIK 3: Prospectief onderzoek naar het verwijspatroon in België

IN TE VULLEN DOOR GYNAECOLOOG

<table>
<thead>
<tr>
<th>Inclusiecriteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zwangerschapsduur tussen 22-32 weken</td>
</tr>
<tr>
<td>• Geschat geboortegewicht <1500 gram</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusiecriteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zwangerschapsduur <22 weken</td>
</tr>
<tr>
<td>• Zwangerschapsinterruptie in het derde trimester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maternele transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja □ Neen □</td>
</tr>
<tr>
<td>Patiëntnummer</td>
</tr>
<tr>
<td>Zwangerschapsleeftijd (wk-d)</td>
</tr>
<tr>
<td>Datum van transfer (dd-mm-yyyy)</td>
</tr>
<tr>
<td>Naar welke instelling?</td>
</tr>
<tr>
<td>Reden van transfer</td>
</tr>
<tr>
<td>□ Pre-eclampsie</td>
</tr>
<tr>
<td>□ Eclampsie</td>
</tr>
<tr>
<td>□ PROM</td>
</tr>
<tr>
<td>□ Chorio-amnionitis</td>
</tr>
<tr>
<td>□ Premature arbeid</td>
</tr>
<tr>
<td>□ Diabetes</td>
</tr>
<tr>
<td>□ geboortegewicht < 1500g</td>
</tr>
<tr>
<td>□ IUGR</td>
</tr>
<tr>
<td>□ Placentaire anomalieën</td>
</tr>
<tr>
<td>□ Laag geïnsereerde placenta</td>
</tr>
<tr>
<td>□ Placenta accreta</td>
</tr>
<tr>
<td>□ Andere, specifieer :</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maternele Non-transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja □ Neen □</td>
</tr>
<tr>
<td>Patiëntnummer</td>
</tr>
<tr>
<td>Partusnummer</td>
</tr>
<tr>
<td>Zwangerschapsleeftijd (wk-d)</td>
</tr>
<tr>
<td>Datum van bevalling (dd-mm-yyyy)</td>
</tr>
<tr>
<td>Geboortegewicht (gram)</td>
</tr>
<tr>
<td>Overlijden neonaat in verloskamer</td>
</tr>
<tr>
<td>Ja □ Neen □</td>
</tr>
<tr>
<td>□ Mors in utero</td>
</tr>
<tr>
<td>□ Perpartum</td>
</tr>
<tr>
<td>□ Postpartum</td>
</tr>
<tr>
<td>Reden van non-transfer</td>
</tr>
<tr>
<td>□ Andere, specifieer :</td>
</tr>
</tbody>
</table>
Numéro d’ordre:

VOLET 3: Etude prospective des stratégies de transfert périnatal utilisées en Belgique

A REMPLIR PAR LE GYNECOLOGUE

Critères d’inclusion:
- Age gestationnel ≥ 22 et < 32 semaines
- Poids de naissance estimé <1500 grammes

Critères d’exclusion:
- Age gestationnel <22 semaines
- Interruption volontaire de grossesse au cours du troisième trimestre.

<table>
<thead>
<tr>
<th>Transfert Maternel</th>
<th>Non-transfert maternel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui □ Non □</td>
<td>Oui □ Non □</td>
</tr>
<tr>
<td>Patiente numéro</td>
<td>Patiente numéro</td>
</tr>
<tr>
<td>Durée de la grossesse (semaines-jours)</td>
<td>Accouchement numéro</td>
</tr>
<tr>
<td>Date du transfert (dd-mm-yyyy)</td>
<td>Durée de la grossesse (semaines-jours)</td>
</tr>
<tr>
<td>Vers quelle institution?</td>
<td>Date de l’accouchement (dd-mm-yyyy)</td>
</tr>
<tr>
<td>Motif(s) du transfert</td>
<td>Poids de naissance (grammes)</td>
</tr>
<tr>
<td>□ Prééclampsie</td>
<td>□ Nouveau-né décédé en salle d’accouchement</td>
</tr>
<tr>
<td>□ Éclampsie</td>
<td>Si oui, spécifier:</td>
</tr>
<tr>
<td>□ PROM</td>
<td>□ Mort in utéro</td>
</tr>
<tr>
<td>□ Chorioamnionite</td>
<td>□ Perpartum</td>
</tr>
<tr>
<td>□ Mise en travail prématurée</td>
<td>□ Postpartum</td>
</tr>
<tr>
<td>□ Diabète</td>
<td>□ Autre spécifier:</td>
</tr>
<tr>
<td>□ PN < 1500g</td>
<td></td>
</tr>
</tbody>
</table>
Volgnummer:

LUIK 3: Prospectief onderzoek naar het verwijspatroon in België

IN TE VULLEN DOOR PEDIATER

<table>
<thead>
<tr>
<th>Inclusiecriteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zwangerschapsduur tussen 22-32 weken</td>
</tr>
<tr>
<td>• Geschat geboortegewicht <1500 gram</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusiecriteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zwangerschapsduur <22 weken</td>
</tr>
<tr>
<td>• Zwangerschapsinterruptie in het derde trimester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neonataal transfer</th>
<th>Neonataal Non-transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja □ Neen □</td>
<td>Ja □ Neen □</td>
</tr>
<tr>
<td>Patiëntnummer (neonaat)</td>
<td>Patiëntnummer</td>
</tr>
<tr>
<td>Partusnummer</td>
<td>Partusnummer</td>
</tr>
<tr>
<td>Zwangerschapsleeftijd (wk-d)</td>
<td>Zwangerschapsleeftijd (wk-d)</td>
</tr>
<tr>
<td>Datum van bevalling (dd-mm-yyyy)</td>
<td>Datum van bevalling (dd-mm-yyyy)</td>
</tr>
<tr>
<td>Geboortegewicht (gram)</td>
<td>Geboortegewicht (gram)</td>
</tr>
<tr>
<td>Datum van transfer (dd-mm-yyyy)</td>
<td>Overlijden neonaat Ja □ Neen □</td>
</tr>
<tr>
<td>Naar welke instelling?</td>
<td>Reden van non-transfer</td>
</tr>
<tr>
<td>Reden van transfer</td>
<td></td>
</tr>
</tbody>
</table>
VOLET 3: Etude prospective des stratégies de transfert périnatal utilisées en Belgique

A REMPLIR PAR LE PEDIATRE

Critères d’inclusion:
- Age gestationnel ≥ 22 et < 32 semaines
- Poids de naissance estimé <1500 grammes

Critères d’exclusion:
- Age gestationnel <22 semaines
- Interruption volontaire de grossesse au cours du troisième trimestre.

Transfert néonatal

<table>
<thead>
<tr>
<th>Patient numéro (nouveau-né)</th>
<th>Accouchement numéro</th>
<th>Age gestationnel (semaines-jours)</th>
<th>Date de l’accouchement (dd-mm-jjjj)</th>
<th>Poids de naissance (grammes)</th>
<th>Date du transfert (dd-mm-jjjj)</th>
<th>Vers quelle institution?</th>
<th>Motifs du transfert</th>
</tr>
</thead>
</table>

Non-transfert néonatal

<table>
<thead>
<tr>
<th>Patient numéro</th>
<th>Accouchement numéro</th>
<th>Age gestationnel (semaines-jours)</th>
<th>Date de l’accouchement (dd-mm-jjjj)</th>
<th>Poids de naissance (grammes)</th>
<th>Décès</th>
<th>Motifs du non-transfert</th>
</tr>
</thead>
</table>
Prospectief onderzoek naar het verwijspatroon in België

Deel MIC

Inclusiecriteria:
- Zwangerschapsduur tussen 22-32 weken
- Geschat geboortegewicht <1500 gram

Exclusiecriteria:
- Zwangerschapsduur <22 weken
- Zwangerschapsinterruptie in het derde trimester

Maternele doorverwijzing

<table>
<thead>
<tr>
<th>Patiëntnummer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwangerschapsleeftijd (wk-d)</td>
<td></td>
</tr>
<tr>
<td>Datum van doorverwijzing (dd-mm-yyyy)</td>
<td></td>
</tr>
<tr>
<td>Van welke instelling?</td>
<td></td>
</tr>
<tr>
<td>Reden van doorverwijzing</td>
<td>□ Pre-eclampsie □ Eclampsie □ PROM □ Chorioamnionitis □ Premature arbeid □ Diabetes □ PN < 1500g □ IUGR □ Laag geïnsereerde placenta □ Placenta accreta □ Andere placenta anomalieën □ Andere, specifieer :</td>
</tr>
</tbody>
</table>

Maternele terugverwijzing

Ja □ Neen □

<table>
<thead>
<tr>
<th>Patiëntnummer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwangerschapsleeftijd (wk-d)</td>
<td></td>
</tr>
<tr>
<td>Datum van terugverwijzing (dd-mm-yyyy)</td>
<td></td>
</tr>
<tr>
<td>Terugverwijzing naar:</td>
<td>□ oorspronkelijke instelling □ huis □ Andere, specifieer</td>
</tr>
<tr>
<td>Reden indien er geen terugverwijzing plaatsvond</td>
<td></td>
</tr>
</tbody>
</table>
Numéro d’ordre:

Etude prospective des stratégies de transfert périnatal utilisées en Belgique

Partie MIC

Critères d’inclusion:
- Age gestationnel ≥ 22 et < 32 semaines
- Poids de naissance estimé <1500 grammes

Critères d’exclusion:
- Age gestationnel <22 semaines
- Interruption volontaire de grossesse au cours du troisième trimestre.

<table>
<thead>
<tr>
<th>Patiente numéro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durée de la grossesse (semaines-jours)</td>
</tr>
<tr>
<td>Date du transfert (dd-mm-yyyy)</td>
</tr>
<tr>
<td>En provenance de quelle institution?</td>
</tr>
<tr>
<td>Motif(s) du transfert</td>
</tr>
<tr>
<td>☐ Prééclampsie</td>
</tr>
<tr>
<td>☐ Eclampsie</td>
</tr>
<tr>
<td>☐ PROM</td>
</tr>
<tr>
<td>☐ Chorioamnionite</td>
</tr>
<tr>
<td>☐ Mise en travail prématurée</td>
</tr>
<tr>
<td>☐ Diabète</td>
</tr>
<tr>
<td>☐ PN < 1500g</td>
</tr>
<tr>
<td>☐ RCIU</td>
</tr>
<tr>
<td>☐ Placenta bas inséré</td>
</tr>
<tr>
<td>☐ Placenta accreta</td>
</tr>
<tr>
<td>☐ Autre anomalie placentaire</td>
</tr>
<tr>
<td>☐ Autre spécifier:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oui ☐ Non ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patiente numéro</td>
</tr>
<tr>
<td>Durée de la grossesse (semaines-jours)</td>
</tr>
<tr>
<td>Date du retransfert (dd-mm-yyyy)</td>
</tr>
<tr>
<td>Retransfert vers:</td>
</tr>
<tr>
<td>☐ Institution d’origine</td>
</tr>
<tr>
<td>☐ Domicile</td>
</tr>
<tr>
<td>☐ Autre spécifier</td>
</tr>
</tbody>
</table>

En cas d’absence de retransfert, motif(s) :